An inverse problem for a class of degenerate evolution multi-term equations with Gerasimov--Caputo derivatives
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 213 (2022), pp. 38-46

Voir la notice de l'article provenant de la source Math-Net.Ru

Issues of well-posedness of linear inverse problems for equations with several Gerasimov–Caputo fractional derivatives in Banach spaces are investigated. The inverse coefficient problem is considered for an equation solved with respect to the highest fractional derivative containing bounded operators at lower order derivatives. The criterion of well-posedness of such a problem is proved. A similar inverse problem for an equation with a degenerate operator at the highest derivative, assuming the relative 0-boundedness of a pair of operators at two higher derivatives, is reduced to two problems on subspaces for equations solved with respect to the highest derivative. The obtained well-posedness criteria allowed us to investigate one class of inverse problems for equations with polynomials from an elliptic differential operator with respect to spatial variables and with several Gerasimov–Caputo time derivatives.
Keywords: Gerasimov–Caputo fractional derivative, degenerate evolution equation, problem well-posedness.
Mots-clés : inverse coefficient problem
@article{INTO_2022_213_a2,
     author = {K. V. Boyko and V. E. Fedorov},
     title = {An inverse problem for a class of degenerate evolution multi-term equations with {Gerasimov--Caputo} derivatives},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {38--46},
     publisher = {mathdoc},
     volume = {213},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_213_a2/}
}
TY  - JOUR
AU  - K. V. Boyko
AU  - V. E. Fedorov
TI  - An inverse problem for a class of degenerate evolution multi-term equations with Gerasimov--Caputo derivatives
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 38
EP  - 46
VL  - 213
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_213_a2/
LA  - ru
ID  - INTO_2022_213_a2
ER  - 
%0 Journal Article
%A K. V. Boyko
%A V. E. Fedorov
%T An inverse problem for a class of degenerate evolution multi-term equations with Gerasimov--Caputo derivatives
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 38-46
%V 213
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_213_a2/
%G ru
%F INTO_2022_213_a2
K. V. Boyko; V. E. Fedorov. An inverse problem for a class of degenerate evolution multi-term equations with Gerasimov--Caputo derivatives. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 213 (2022), pp. 38-46. http://geodesic.mathdoc.fr/item/INTO_2022_213_a2/