Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_213_a2, author = {K. V. Boyko and V. E. Fedorov}, title = {An inverse problem for a class of degenerate evolution multi-term equations with {Gerasimov--Caputo} derivatives}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {38--46}, publisher = {mathdoc}, volume = {213}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_213_a2/} }
TY - JOUR AU - K. V. Boyko AU - V. E. Fedorov TI - An inverse problem for a class of degenerate evolution multi-term equations with Gerasimov--Caputo derivatives JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 38 EP - 46 VL - 213 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_213_a2/ LA - ru ID - INTO_2022_213_a2 ER -
%0 Journal Article %A K. V. Boyko %A V. E. Fedorov %T An inverse problem for a class of degenerate evolution multi-term equations with Gerasimov--Caputo derivatives %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 38-46 %V 213 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_213_a2/ %G ru %F INTO_2022_213_a2
K. V. Boyko; V. E. Fedorov. An inverse problem for a class of degenerate evolution multi-term equations with Gerasimov--Caputo derivatives. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 213 (2022), pp. 38-46. http://geodesic.mathdoc.fr/item/INTO_2022_213_a2/
[1] Glushak A. V., “Zadacha tipa Koshi dlya abstraktnogo differentsialnogo uravneniya s drobnymi proizvodnymi”, Mat. zametki., 77:1 (2005), 28–41 | DOI | MR | Zbl
[2] Glushak A. V., “Obratnaya zadacha dlya abstraktnogo differentsialnogo uravneniya Eilera—Puassona—Darbu”, Sovr. mat. Fundam. napr., 15 (2006), 126–141
[3] Glushak A. V., “Ob odnoi obratnoi zadache dlya abstraktnogo differentsialnogo uravneniya drobnogo poryadka”, Mat. zametki., 87:5 (2010), 684–693 | DOI | MR | Zbl
[4] Tribel Kh., Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Mir, M., 1980
[5] Fedorov V. E., “Silno golomorfnye gruppy lineinykh uravnenii sobolevskogo tipa v lokalno vypuklykh prostranstvakh”, Differ. uravn., 40:5 (2004), 702–712 | DOI | MR | Zbl
[6] Fedorov V. E., Boiko K. V., Fuong T. D., “Nachalnye zadachi dlya nekotorykh klassov lineinykh evolyutsionnykh uravnenii s neskolkimi drobnymi proizvodnymi”, Mat. zametki SVFU., 28:3 (2021), 85–104 | DOI
[7] Fedorov V. E., Turov M. M., “Defekt zadachi tipa Koshi dlya lineinykh uravnenii s neskolkimi proizvodnymi Rimana—Liuvillya”, Sib. mat. zh., 62:5 (2021), 1143–1162 | DOI | Zbl
[8] Alvarez-Pardo E., Lizama C., “Mild solutions for multi-term time-fractional differential equations with nonlocal initial conditions”, Electron. J. Differ. Equations., 2014:39 (2014), 1–10 | MR
[9] Fedorov V. E., Kostić M., “On a class of abstract degenerate multi-term fractional differential equations in locally convex spaces”, Euras. Math. J., 9:3 (2018), 33–57 | DOI | MR | Zbl
[10] Fedorov V. E., Nagumanova A. V., Kostić M., “A class of inverse problems for fractional order degenerate evolution equations”, J. Inv. Ill-Posed Probl., 29:2 (2020), 173–184 | DOI | MR
[11] Jiang H., Liu F., Turner I., Burrage K., “Analitical solutions for the multi-term time-space Caputo–Riesz fractional advection-diffussion equations on a finite domain”, J. Math. Anal. Appl., 389:2 (2012), 1117–1127 | DOI | MR | Zbl
[12] Li C.-G., Kostic̀ M., Li M., “Abstract multi-term fractional differential equations”, Kragujevac J. Math., 38:1 (2014), 51–71 | DOI | MR | Zbl
[13] Liu F., Meerschaert M. M., McGough R. J., Zhuang P., Liu Q., “Numerical methods for solving the multi-term time-fractional wave-diffusion equation”, Fract. Calc. Appl. Anal., 16:1 (2013), 9–25 | DOI | MR | Zbl
[14] Lizama C., Prado H., “Fractional relaxation equations on Banach spaces”, Appl. Math. Lett., 23:1 (2010), 137–142 | DOI | MR | Zbl
[15] Orlovsky D. G., “Parameter determination in a differential equation of fractional order with Riemann–Liouville fractional derivative in a Hilbert space”, Zh. SFU. Ser. Mat. Fiz., 8:1 (2015), 55–63 | MR | Zbl
[16] Sviridyuk G. A., Fedorov V. E., Linear Sobolev type equations and degenerate semigroups of operators, VSP, Utrecht, Boston, 2003 | MR | Zbl