Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_213_a0, author = {Yu. V. Agrafonov and I. S. Petrushin and D. V. Khalaimov}, title = {Singlet linear equation for one-particle distribution function in statistical physics of surface phenomena in liquids}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--9}, publisher = {mathdoc}, volume = {213}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_213_a0/} }
TY - JOUR AU - Yu. V. Agrafonov AU - I. S. Petrushin AU - D. V. Khalaimov TI - Singlet linear equation for one-particle distribution function in statistical physics of surface phenomena in liquids JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 3 EP - 9 VL - 213 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_213_a0/ LA - ru ID - INTO_2022_213_a0 ER -
%0 Journal Article %A Yu. V. Agrafonov %A I. S. Petrushin %A D. V. Khalaimov %T Singlet linear equation for one-particle distribution function in statistical physics of surface phenomena in liquids %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 3-9 %V 213 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_213_a0/ %G ru %F INTO_2022_213_a0
Yu. V. Agrafonov; I. S. Petrushin; D. V. Khalaimov. Singlet linear equation for one-particle distribution function in statistical physics of surface phenomena in liquids. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 213 (2022), pp. 3-9. http://geodesic.mathdoc.fr/item/INTO_2022_213_a0/
[16] Agrafonov Yu. V., Petrushin I. S., “Raschet strukturnykh kharakteristik amorfnykh tel metodom molekulyarnykh funktsii raspredeleniya”, Izv. RAN. Ser. Fiz., 84:7 (2020), 951–956 | MR
[17] Agrafonov Yu. V., Petrushin I. S., “Two-particle distribution function of a non-ideal molecular system near a hard surface”, Physics Procedia., 71 (2015), 364-368 | DOI
[18] Agrafonov Yu. V., Petrushin I. S., “Random first order transition from a supercooled liquid to an ideal glass”, Cond. Matter Interphases., 22:2 (2020), 291-302 | DOI
[19] Agrafonov Yu. V., Petrushin I. S., “Linear singlet equation in the surface phenomena physics”, J. Phys. Conf. Ser., 1847 (2021), 012035 | DOI
[20] Agrafonov Yu. V., Petrushin I. S., Khalaimov D. V., “Long-range oscillations of a single-particle distribution function for a molecular system of hard spheres near a solid surface in the Percus–Yevick approximation”, J. Phys. Conf. Ser., 2036 (2021), 012012 | DOI
[21] Franz S., Mezard M., Parisi G., Peliti L., “The response of glassy systems to random perturbations: A bridge between equilibrium and off-equilibrium”, J Stat. Phys., 97:3-4 (1999), 459–488 | DOI | MR | Zbl
[22] He Y., Rice S. A., Xu X., “Analytic solution of the Ornstein–Zernike relation for inhomogeneous liquids”, J. Chem. Phys., 145 (2016), 234508 | DOI | MR
[23] Martynov G. A., Fundamental Theory of Liquids. Method of Distribution Functions, Adam Hilger, Bristol, 1992 | MR
[24] Mezard M., Parisi G., “Thermodynamics of glasses: a first principles computation”, J. Phys. Condens. Matter., 11:3-4 (1999), A157–A165 | DOI
[25] Parisi G., Procaccia I., Shor C., Zylberg J., “Effective forces in thermal amorphous solids with genericinteractions”, Phys. Rev. E., 99:1 (2019), 011001 | DOI
[26] Parisi G., Slanina F., “Toy model for the meanfield theory of hard-sphere liquids”, Phys. Rev. E., 62:5 (2000), 6554 | DOI
[27] Parisi G., Zamponi F., “The ideal glass transition of hard spheres”, J. Chem. Phys., 123:14 (2005), 144501 | DOI
[28] Parisi G., Zamponi F., “Amorphous packings of hard spheres for large space dimension”, J. Stat. Mech. Theory Exp., 2006:3 (2006), P03017 | DOI | MR | Zbl
[29] Robles M., Lopez de Haro M., Santos A., Bravo Yuste S., “Is there a glass transition for dense hard-sphere systems?”, J. Chem. Phys., 108:3 (1998), 1290-1291 | DOI
[30] Rogers F. J., Young D. A., “New, thermodynamically consistent, integral equation for simple fluids”, Phys. Rev. A., 30:2 (1984), 999 | DOI
[31] Tikhonov D. A., Kiselyov O. E., Martynov G. A., Sarkisov G. N., “Singlet integral equation in the statistical theory of surface phenomena in liquids”, J. Mol. Liquids., 82 (1999), 3–17 | DOI | MR
[32] Vompe A. G., Martynov G. A., “The self-consistent statistical theory of condensation”, J. Chem. Phys., 106:14 (1997), 6095-6101 | DOI
[33] Wertheim M. S., “Exact solution of the Percus–Yevick integral equation for hard spheres”, Phys. Rev. Lett., 10:8 (1963), 321-323 | DOI | MR | Zbl