Singlet linear equation for one-particle distribution function in statistical physics of surface phenomena in liquids
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 213 (2022), pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we suggest the algorithm to solve the linear Fredholm integral equation of the second kind for the one-particle distribution function of simple liquid near the hard surface. The core and the right part of the equation are guessed using Percus-Yevick approximation defined on finite interval for spatial macroscopic liquid. We suggest an approach to solve the equation analytically for each interval where function is defined.
Keywords: supercooled liquid, ideal glass, partial distribution function, replicas, chaotic phase transition of the first kind, Fredholm equation of the second kind.
@article{INTO_2022_213_a0,
     author = {Yu. V. Agrafonov and I. S. Petrushin and D. V. Khalaimov},
     title = {Singlet linear equation for one-particle distribution function in statistical physics of surface phenomena in liquids},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--9},
     publisher = {mathdoc},
     volume = {213},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_213_a0/}
}
TY  - JOUR
AU  - Yu. V. Agrafonov
AU  - I. S. Petrushin
AU  - D. V. Khalaimov
TI  - Singlet linear equation for one-particle distribution function in statistical physics of surface phenomena in liquids
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 3
EP  - 9
VL  - 213
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_213_a0/
LA  - ru
ID  - INTO_2022_213_a0
ER  - 
%0 Journal Article
%A Yu. V. Agrafonov
%A I. S. Petrushin
%A D. V. Khalaimov
%T Singlet linear equation for one-particle distribution function in statistical physics of surface phenomena in liquids
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 3-9
%V 213
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_213_a0/
%G ru
%F INTO_2022_213_a0
Yu. V. Agrafonov; I. S. Petrushin; D. V. Khalaimov. Singlet linear equation for one-particle distribution function in statistical physics of surface phenomena in liquids. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 213 (2022), pp. 3-9. http://geodesic.mathdoc.fr/item/INTO_2022_213_a0/

[16] Agrafonov Yu. V., Petrushin I. S., “Raschet strukturnykh kharakteristik amorfnykh tel metodom molekulyarnykh funktsii raspredeleniya”, Izv. RAN. Ser. Fiz., 84:7 (2020), 951–956 | MR

[17] Agrafonov Yu. V., Petrushin I. S., “Two-particle distribution function of a non-ideal molecular system near a hard surface”, Physics Procedia., 71 (2015), 364-368 | DOI

[18] Agrafonov Yu. V., Petrushin I. S., “Random first order transition from a supercooled liquid to an ideal glass”, Cond. Matter Interphases., 22:2 (2020), 291-302 | DOI

[19] Agrafonov Yu. V., Petrushin I. S., “Linear singlet equation in the surface phenomena physics”, J. Phys. Conf. Ser., 1847 (2021), 012035 | DOI

[20] Agrafonov Yu. V., Petrushin I. S., Khalaimov D. V., “Long-range oscillations of a single-particle distribution function for a molecular system of hard spheres near a solid surface in the Percus–Yevick approximation”, J. Phys. Conf. Ser., 2036 (2021), 012012 | DOI

[21] Franz S., Mezard M., Parisi G., Peliti L., “The response of glassy systems to random perturbations: A bridge between equilibrium and off-equilibrium”, J Stat. Phys., 97:3-4 (1999), 459–488 | DOI | MR | Zbl

[22] He Y., Rice S. A., Xu X., “Analytic solution of the Ornstein–Zernike relation for inhomogeneous liquids”, J. Chem. Phys., 145 (2016), 234508 | DOI | MR

[23] Martynov G. A., Fundamental Theory of Liquids. Method of Distribution Functions, Adam Hilger, Bristol, 1992 | MR

[24] Mezard M., Parisi G., “Thermodynamics of glasses: a first principles computation”, J. Phys. Condens. Matter., 11:3-4 (1999), A157–A165 | DOI

[25] Parisi G., Procaccia I., Shor C., Zylberg J., “Effective forces in thermal amorphous solids with genericinteractions”, Phys. Rev. E., 99:1 (2019), 011001 | DOI

[26] Parisi G., Slanina F., “Toy model for the meanfield theory of hard-sphere liquids”, Phys. Rev. E., 62:5 (2000), 6554 | DOI

[27] Parisi G., Zamponi F., “The ideal glass transition of hard spheres”, J. Chem. Phys., 123:14 (2005), 144501 | DOI

[28] Parisi G., Zamponi F., “Amorphous packings of hard spheres for large space dimension”, J. Stat. Mech. Theory Exp., 2006:3 (2006), P03017 | DOI | MR | Zbl

[29] Robles M., Lopez de Haro M., Santos A., Bravo Yuste S., “Is there a glass transition for dense hard-sphere systems?”, J. Chem. Phys., 108:3 (1998), 1290-1291 | DOI

[30] Rogers F. J., Young D. A., “New, thermodynamically consistent, integral equation for simple fluids”, Phys. Rev. A., 30:2 (1984), 999 | DOI

[31] Tikhonov D. A., Kiselyov O. E., Martynov G. A., Sarkisov G. N., “Singlet integral equation in the statistical theory of surface phenomena in liquids”, J. Mol. Liquids., 82 (1999), 3–17 | DOI | MR

[32] Vompe A. G., Martynov G. A., “The self-consistent statistical theory of condensation”, J. Chem. Phys., 106:14 (1997), 6095-6101 | DOI

[33] Wertheim M. S., “Exact solution of the Percus–Yevick integral equation for hard spheres”, Phys. Rev. Lett., 10:8 (1963), 321-323 | DOI | MR | Zbl