Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_212_a8, author = {V. A. Srochko and V. G. Antonik and E. V. Aksenyushkina}, title = {Numerical solution of a linear-quadratic optimal control problem based on nonlocal methods}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {84--91}, publisher = {mathdoc}, volume = {212}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_212_a8/} }
TY - JOUR AU - V. A. Srochko AU - V. G. Antonik AU - E. V. Aksenyushkina TI - Numerical solution of a linear-quadratic optimal control problem based on nonlocal methods JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 84 EP - 91 VL - 212 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_212_a8/ LA - ru ID - INTO_2022_212_a8 ER -
%0 Journal Article %A V. A. Srochko %A V. G. Antonik %A E. V. Aksenyushkina %T Numerical solution of a linear-quadratic optimal control problem based on nonlocal methods %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 84-91 %V 212 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_212_a8/ %G ru %F INTO_2022_212_a8
V. A. Srochko; V. G. Antonik; E. V. Aksenyushkina. Numerical solution of a linear-quadratic optimal control problem based on nonlocal methods. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 212 (2022), pp. 84-91. http://geodesic.mathdoc.fr/item/INTO_2022_212_a8/
[1] Arguchintsev A. V., Dykhta V. A., Srochko V. A., “Optimalnoe upravlenie: nelokalnye usloviya, vychislitelnye metody i variatsionnyi printsip maksimuma”, Izv. vuzov. Mat., 2009, no. 1, 3–43 | MR | Zbl
[2] Baturin V. A., Urbanovich D. E., Priblizhennye metody optimalnogo upravleniya, osnovannye na printsipe rasshireniya, Nauka, Novosibirsk, 1997
[3] Vasilev F. P., Metody optimizatsii, Faktorial, M., 2002
[4] Gabasov R., Kirillova F. M., Printsip maksimuma v teorii optimalnogo upravleniya, Librokom, M., 2011
[5] Krotov V. F., “Upravlenie kvantovymi sistemami i nekotorye idei optimalnogo upravleniya”, Avtomat. telemekh., 2009, no. 3, 15–23 | MR | Zbl
[6] Srochko V. A., Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000