Numerical solution of a linear-quadratic optimal control problem based on nonlocal methods
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 212 (2022), pp. 84-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a convex linear-quadratic problem is considered within the class of nonlocal descent methods. The uniqueness of solutions of the phase and conjugate systems is established. The convergence of iterative methods with respect to the cost functional is proved.
Keywords: linear-quadratic problem, exact formulas for the increment of a functional, methods of nonlocal improvement.
@article{INTO_2022_212_a8,
     author = {V. A. Srochko and V. G. Antonik and E. V. Aksenyushkina},
     title = {Numerical solution of a linear-quadratic optimal control problem based on nonlocal methods},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {84--91},
     publisher = {mathdoc},
     volume = {212},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_212_a8/}
}
TY  - JOUR
AU  - V. A. Srochko
AU  - V. G. Antonik
AU  - E. V. Aksenyushkina
TI  - Numerical solution of a linear-quadratic optimal control problem based on nonlocal methods
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 84
EP  - 91
VL  - 212
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_212_a8/
LA  - ru
ID  - INTO_2022_212_a8
ER  - 
%0 Journal Article
%A V. A. Srochko
%A V. G. Antonik
%A E. V. Aksenyushkina
%T Numerical solution of a linear-quadratic optimal control problem based on nonlocal methods
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 84-91
%V 212
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_212_a8/
%G ru
%F INTO_2022_212_a8
V. A. Srochko; V. G. Antonik; E. V. Aksenyushkina. Numerical solution of a linear-quadratic optimal control problem based on nonlocal methods. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 212 (2022), pp. 84-91. http://geodesic.mathdoc.fr/item/INTO_2022_212_a8/

[1] Arguchintsev A. V., Dykhta V. A., Srochko V. A., “Optimalnoe upravlenie: nelokalnye usloviya, vychislitelnye metody i variatsionnyi printsip maksimuma”, Izv. vuzov. Mat., 2009, no. 1, 3–43 | MR | Zbl

[2] Baturin V. A., Urbanovich D. E., Priblizhennye metody optimalnogo upravleniya, osnovannye na printsipe rasshireniya, Nauka, Novosibirsk, 1997

[3] Vasilev F. P., Metody optimizatsii, Faktorial, M., 2002

[4] Gabasov R., Kirillova F. M., Printsip maksimuma v teorii optimalnogo upravleniya, Librokom, M., 2011

[5] Krotov V. F., “Upravlenie kvantovymi sistemami i nekotorye idei optimalnogo upravleniya”, Avtomat. telemekh., 2009, no. 3, 15–23 | MR | Zbl

[6] Srochko V. A., Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000