Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_212_a13, author = {M. V. Shamolin}, title = {Systems with~dissipation with~a finite number of degrees of freedom: analysis and ~integrability. {II.} {General} class of dynamical systems on the tangent bundle of a multidimensional sphere}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {139--148}, publisher = {mathdoc}, volume = {212}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_212_a13/} }
TY - JOUR AU - M. V. Shamolin TI - Systems with~dissipation with~a finite number of degrees of freedom: analysis and ~integrability. II. General class of dynamical systems on the tangent bundle of a multidimensional sphere JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 139 EP - 148 VL - 212 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_212_a13/ LA - ru ID - INTO_2022_212_a13 ER -
%0 Journal Article %A M. V. Shamolin %T Systems with~dissipation with~a finite number of degrees of freedom: analysis and ~integrability. II. General class of dynamical systems on the tangent bundle of a multidimensional sphere %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 139-148 %V 212 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_212_a13/ %G ru %F INTO_2022_212_a13
M. V. Shamolin. Systems with~dissipation with~a finite number of degrees of freedom: analysis and ~integrability. II. General class of dynamical systems on the tangent bundle of a multidimensional sphere. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 212 (2022), pp. 139-148. http://geodesic.mathdoc.fr/item/INTO_2022_212_a13/