Systems with~dissipation with~a finite number of degrees of freedom: analysis and ~integrability. II. General class of dynamical systems on the tangent bundle of a multidimensional sphere
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 212 (2022), pp. 139-148
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is the second part of a survey on the integrability of systems with a large number $n$ of degrees of freedom (the first part: Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory, 211 (2022), pp. 41–74). The review consists of three parts. In the first part, the primordial problem from the dynamics of a multidimensional rigid body placed in a nonconservative force field is described in detail. In this second part, we consider more general dynamical systems on the tangent bundles to the $n$-dimensional sphere. In the third part, which will be published in the next issue, we will consider dynamical systems on the tangent bundles to smooth manifolds of a sufficiently wide class. Theorems on sufficient conditions for the integrability of the considered dynamical systems in the class of transcendental functions are proved.
Keywords:
dynamical system with a large number of degrees of freedom, integrability, transcendental first integral.
@article{INTO_2022_212_a13,
author = {M. V. Shamolin},
title = {Systems with~dissipation with~a finite number of degrees of freedom: analysis and ~integrability. {II.} {General} class of dynamical systems on the tangent bundle of a multidimensional sphere},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {139--148},
publisher = {mathdoc},
volume = {212},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2022_212_a13/}
}
TY - JOUR AU - M. V. Shamolin TI - Systems with~dissipation with~a finite number of degrees of freedom: analysis and ~integrability. II. General class of dynamical systems on the tangent bundle of a multidimensional sphere JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 139 EP - 148 VL - 212 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_212_a13/ LA - ru ID - INTO_2022_212_a13 ER -
%0 Journal Article %A M. V. Shamolin %T Systems with~dissipation with~a finite number of degrees of freedom: analysis and ~integrability. II. General class of dynamical systems on the tangent bundle of a multidimensional sphere %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 139-148 %V 212 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_212_a13/ %G ru %F INTO_2022_212_a13
M. V. Shamolin. Systems with~dissipation with~a finite number of degrees of freedom: analysis and ~integrability. II. General class of dynamical systems on the tangent bundle of a multidimensional sphere. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 212 (2022), pp. 139-148. http://geodesic.mathdoc.fr/item/INTO_2022_212_a13/