Lie algebras of projective motions of five-dimensional pseudo-Riemannian spaces. I. Preliminaries
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 212 (2022), pp. 10-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is devoted to the problem of studying multidimensional pseudo-Riemannian manifolds that admit Lie algebras of infinitesimal projective (in particular, affine) transformations, wider than Lie algebras of infinitesimal homotheties. Such manifolds have numerous geometric and physical applications. This paper is the first part of the work; continuation will be published in future issues.
Keywords: differential geometry, five-dimensional pseudo-Riemannian manifold, $h$-space, system of partial differential equations, nonhomothetical projective motion, Killing equation, projective Lie algebra.
@article{INTO_2022_212_a1,
     author = {A. V. Aminova and D. R. Khakimov},
     title = {Lie algebras of projective motions of five-dimensional {pseudo-Riemannian} spaces. {I.} {Preliminaries}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {10--29},
     publisher = {mathdoc},
     volume = {212},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_212_a1/}
}
TY  - JOUR
AU  - A. V. Aminova
AU  - D. R. Khakimov
TI  - Lie algebras of projective motions of five-dimensional pseudo-Riemannian spaces. I. Preliminaries
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 10
EP  - 29
VL  - 212
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_212_a1/
LA  - ru
ID  - INTO_2022_212_a1
ER  - 
%0 Journal Article
%A A. V. Aminova
%A D. R. Khakimov
%T Lie algebras of projective motions of five-dimensional pseudo-Riemannian spaces. I. Preliminaries
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 10-29
%V 212
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_212_a1/
%G ru
%F INTO_2022_212_a1
A. V. Aminova; D. R. Khakimov. Lie algebras of projective motions of five-dimensional pseudo-Riemannian spaces. I. Preliminaries. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 212 (2022), pp. 10-29. http://geodesic.mathdoc.fr/item/INTO_2022_212_a1/

[1] Aminova A. V., “Gruppy proektivnykh preobrazovanii nekotorykh polei tyagoteniya”, Gravit. teoriya otnosit., 1970, no. 7, 127–131

[2] Aminova A. V., “O polyakh tyagoteniya, dopuskayuschikh gruppy proektivnykh dvizhenii”, Dokl. AN SSSR., 197:4 (1971), 807–809

[3] Aminova A. V., “Proektivnye gruppy v polyakh tyagoteniya. I”, Gravit. teoriya otnosit., 1971, no. 8, 3–-13

[4] Aminova A. V., “Proektivnye gruppy v polyakh tyagoteniya. II”, Gravit. teoriya otnosit., 1971, no. 8, 14–20

[5] Aminova A. V., O beskonechno malykh preobrazovaniyakh, sokhranyayuschikh traektorii probnykh tel, Preprint ITF AN USSR 71-85R, Kiev, 1971

[6] Aminova A. V., “Proektivno-gruppovye svoistva nekotorykh rimanovykh prostranstv”, Tr. Geom. semin. VINITI AN SSSR., 6 (1974), 295–316 | Zbl

[7] Aminova A. V., “Gruppy proektivnykh i affinnykh dvizhenii v prostranstvakh obschei teorii otnositelnosti”, Tr. Geom. semin. VINITI AN SSSR., 6 (1974), 317–346 | Zbl

[8] Aminova A. V., “Proektivnye gruppy v prostranstvakh-vremenakh, dopuskayuschikh dva postoyannykh vektornykh polya”, Gravit. teoriya otnosit., 1976, no. 10, 9–22

[9] Aminova A. V., “Ob integrirovanii kovariantnogo differentsialnogo uravneniya pervogo poryadka i geodezicheskom otobrazhenii rimanovykh prostranstv proizvolnoi signatury i razmernosti”, Izv. vuzov. Mat., 1988, no. 1, 3–13

[10] Aminova A. V., “Gruppy preobrazovanii rimanovykh mnogoobrazii”, Itogi nauki tekhn. Ser. Probl. geom. VINITI., 22 (1990), 97–165 | Zbl

[11] Aminova A. V., “Psevdorimanovy mnogoobraziya s obschimi geodezicheskimi”, Usp. mat. nauk., 48:2 (290) (1993), 107–164 | MR | Zbl

[12] Aminova A. V., “Algebry Li infinitezimalnykh proektivnykh preobrazovanii lorentsevykh mnogoobrazii”, Usp. mat. nauk., 50:1 (1995), 69–142 | MR | Zbl

[13] Aminova A. V., Proektivnye preobrazovaniya psevdorimanovykh mnogoobrazii, Yanus-K, M., 2003

[14] Aminova A. V., “Proektivnye simmetrii i zakony sokhraneniya v $K$-prostranstvakh, opredelyaemykh polyami tyagoteniya”, Izv. vuzov. Fizika., 51:4 (2008), 30–37 | MR | Zbl

[15] Aminova A. V., Aminov N. A.-M., “Proektivno-geometricheskaya teoriya sistem differentsialnykh uravnenii vtorogo poryadka: teoremy vypryamleniya i simmetrii”, Mat. sb., 201:5 (2010), 3–13 | MR

[16] Aminova A. V., Proektivnye simmetrii gravitatsionnykh polei, Izd-vo Kazan. un-ta, Kazan, 2018

[17] Aminova A. V., Aminov N. A.-M., “Proektivnaya geometriya sistem differentsialnykh uravnenii vtorogo poryadka”, Mat. sb., 197:7 (2006), 3–28 | MR | Zbl

[18] Aminova A. V., Aminov N. A.-M., “Prostranstva s proektivnoi svyaznostyu Kartana i gruppovoi analiz sistem obyknovennykh differentsialnykh uravnenii vtorogo poryadka”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obzory., 123 (2009), 58–80 | MR

[19] Aminova A. V., Khakimov D. R., “O proektivnykh dvizheniyakh pyatimernykh prostranstv spetsialnogo vida”, Izv. vuzov. Mat., 2017, no. 5, 97–102 | Zbl

[20] Aminova A. V., Khakimov D. R., “O proektivnykh dvizheniyakh pyatimernykh prostranstv. I. $H$-prostranstva tipa $\{32\}$”, Prostranstvo, vremya i fundamentalnye vzaimodeistviya., 2018, no. 4, 21–31

[21] Aminova A. V., Khakimov D. R., “O proektivnykh dvizheniyakh pyatimernykh prostranstv. II. $H$-prostranstva tipa $\{41\}$”, Prostranstvo, vremya i fundamentalnye vzaimodeistviya., 2019, no. 1, 45–55

[22] Aminova A. V., Khakimov D. R., “O proektivnykh dvizheniyakh pyatimernykh prostranstv. III. $H$-prostranstva tipa $\{5\}$”, Prostranstvo, vremya i fundamentalnye vzaimodeistviya., 2019, no. 1, 56—66

[23] Aminova A. V., Khakimov D. R., “$H$-prostranstva $(H_{41}, g)$ tipa $\{41\}$: proektivno-gruppovye svoistva”, Prostranstvo, vremya i fundamentalnye vzaimodeistviya., 2019, no. 4, 4–12

[24] Aminova A. V., Khakimov D. R., “Proektivno-gruppovye svoistva $h$-prostranstv tipa $\{221\}$”, Izv. vuzov. Mat., 2019, no. 10, 87–93 | Zbl

[25] Aminova A. V., Khakimov D. R., “Proektivno-gruppovye svoistva $h$-prostranstv $H_5$ tipa $\{5\}$”, Prostranstvo, vremya i fundamentalnye vzaimodeistviya., 2020, no. 1, 4–11

[26] Aminova A. V., Khakimov D. R., “O svoistvakh proektivnykh algebr Li zhestkikh $h$-prostranstv $H_{32}$ tipa $\{32\}$”, Uch. zap. Kazan. un-ta. Ser. Fiz.-mat. nauki., 162:2 (2020), 111–119 | MR

[27] Aminova A. V., Khakimov D. R., “Algebry Li proektivnykh dvizhenii pyatimernykh $h$-prostranstv $H_{221}$ tipa $\{221\}$”, Izv. vuzov. Mat., 2021, no. 12, 9–22 | Zbl

[28] Budanov K. M., Sultanov A. Ya., “Infinitezimalnye affinnye preobrazovaniya rassloeniya Veilya vtorogo poryadka so svyaznostyu polnogo lifta”, Izv. vuzov. Mat., 2015, no. 12, 3–-13 | MR | Zbl

[29] Gladush V. D., “Pyatimernaya obschaya teoriya otnositelnosti i teoriya Kalutsy––Kleina”, Teor. mat. fiz., 136:3 (2003), 480–-495 | MR | Zbl

[30] Golikov V. I., “O geodezicheskom otobrazhenii polei tyagoteniya obschego vida”, Tr. semin. vekt. tenz. anal., 1963, no. 12, 97–129 | MR | Zbl

[31] Egorov I. P., Dvizheniya v prostranstvakh affinnoi svyaznosti, Izd-vo Kazan. un-ta, Kazan, 1965 | MR

[32] Zhukova L. I., “Rimanovy prostranstva s proektivnoi gruppoi”, Uch. zap. Penzensk. ped. in-ta., 124 (1971), 13–-18

[33] Zhukova L. I., “Proektivnye preobrazovaniya v rimanovykh prostranstvakh (izotropnyi sluchai)”, Uch. zap. Penzensk. ped. in-ta., 124 (1971), 19–25

[34] Zhukova L. I., “O gruppakh proektivnykh preobrazovanii nekotorykh rimanovykh prostranstv”, Uch. zap. Penzensk. ped. in-ta., 124 (1971), 26–30

[35] Zhukova L. I., “Rimanovy prostranstva, dopuskayuschie proektivnye preobrazovaniya”, Izv. vuzov. Mat., 1973, no. 6, 37–41 | Zbl

[36] Kiselev A. S., “Kosmologicheskaya problema v pyatimernom prostranstve-vremeni”, Yaroslav. ped. vestn. Ser. Fiz.-mat. estestv. nauki., 2010, no. 1, 64–67

[37] Kiselev A. S., Krechet V. G., “Kosmologicheskaya problema v pyatimernom prostranstve Rimana—Veilya s idealnoi zhidkostyu”, Yaroslav. ped. vestn. Ser. Fiz.-mat. estestv. nauki., 3:1 (2011), 37–41

[38] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii. T. 1-2, Nauka, M., 1981 | MR

[39] Krechet V. G., Levkoeva M. V., Sadovnikov D. V., “Geometricheskaya teoriya elektromagnitnogo polya v pyatimernom affinno-metricheskom prostranstve”, Vestn. RUDN. Ser. Fiz., 1:9 (2001), 33–-37

[40] Kruchkovich G. I., “Uravneniya poluprivodimosti i geodezicheskoe sootvetstvie prostranstv Lorentsa”, Tr. Vsesoyuz. zaoch. energetich. in-ta., 1963, no. 24, 74–87

[41] Kruchkovich G. I., “O prostranstvakh $V(K)$ i ikh geodezicheskikh otobrazheniyakh”, Tr. Vsesoyuz. zaoch. energetich. in-ta., 1967, no. 33, 3–-18

[42] Petrov A. Z., “O geodezicheskom otobrazhenii rimanovykh prostranstv neopredelennoi metriki”, Uch. zap. Kazan. un-ta., 109:3 (1949), 7–36

[43] Postnikov M. M., Lektsii po geometrii. Semestr V. Rimanova geometriya, M., 1998

[44] Rcheulishvili G. L., “Sfericheski-simmetrichnyi lineinyi element i vektory Killinga v pyatimernom prostranstve”, Teor. mat. fiz., 102:3 (1995), 345–-351 | MR | Zbl

[45] Rcheulishvili G. L., “Obobschennye vektory Killinga v pyatimernom lorentsevom prostranstve”, Teor. mat. fiz., 112:2 (1997), 249–-253 | MR | Zbl

[46] Sinyukov N. S., “O geodezicheskom otobrazhenii rimanovykh prostranstv na simmetricheskie rimanovy prostranstva”, Dokl. AN SSSR., 98:1 (1954), 21–-23 | MR | Zbl

[47] Sinyukov N. S., “Normalnye geodezicheskie otobrazheniya rimanovykh prostranstv”, Dokl. AN SSSR., 111:4 (1956), 266–-267 | MR

[48] Sinyukov N. S., “Ekvidistantnye rimanovy prostranstva”, Nauchn. ezhegod. Odessa., 1957, 133–-135

[49] Sinyukov N. S., “Ob odnom invariantnom preobrazovanii rimanovykh prostranstv s obschimi geodezicheskimi”, Dokl. AN SSSR., 137:6 (1961), 1312–1314 | Zbl

[50] Sinyukov N. S., “Pochti geodezicheskie otobrazheniya affinnosvyaznykh i rimanovykh prostranstv”, Dokl. AN SSSR., 151:4 (1963), 781–782 | MR | Zbl

[51] Sinyukov N. S., “K teorii geodezicheskogo otobrazheniya rimanovykh prostranstv”, Dokl. AN SSSR., 169:4 (1966), 770–-772 | Zbl

[52] Sinyukov N. S., Geodezicheskie otobrazheniya rimanovykh prostranstv, Nauka, M., 1979 | MR

[53] Solodovnikov A. S., “Proektivnye preobrazovaniya rimanovykh prostranstv”, Usp. mat. nauk., 11 (1956), 45–116 | Zbl

[54] Solodovnikov A. S., “Prostranstva s obschimi geodezicheskimi”, Dokl. AN SSSR., 108:2 (1956), 201–203 | MR | Zbl

[55] Solodovnikov A. S., “Geodezicheskie klassy prostranstv $V(K)$”, Dokl. AN SSSR., 111:1 (1956), 33–36 | MR | Zbl

[56] Solodovnikov A. S., “Prostranstva s obschimi geodezicheskimi”, Tr. semin. vekt. tenz. anal., 1961, no. 2, 43–102 | MR | Zbl

[57] Trunev A. P., “Fundamentalnye vzaimodeistviya v teorii Kalutsy"– Kleina”, Nauch. zh. Kuban. gos. agr. un-ta., 71:7 (2011), 1–26

[58] Sharafutdinov V. A., Vvedenie v differentsialnuyu topologiyu i rimanovu geometriyu, IPTs NGU, Novosibirsk:, 2018

[59] Shirokov P. A., Tenzornoe ischislenie, Izd-vo KGU, Kazan, 1961

[60] Shirokov P. A., Izbrannye trudy po geometrii, Izd-vo KGU, Kazan, 1966 | MR

[61] Eizenkhart L. P., Nepreryvnye gruppy preobrazovanii, IL, M., 1947

[62] Eizenkhart L. P., Rimanova geometriya, IL, M., 1948

[63] Abe O., “Gravitational-wave propagation in the five-dimensional Kaluza–Klein space-time”, Nuovo Cim. B., 109:6 (1994), 659–-673 | DOI | MR

[64] Aminova A. V., “On geodesic mappings of Riemannian spaces”, Tensor., 46 (1987), 179–186 | Zbl

[65] Aminova A. V., “Group-invariant methods in the theory of projective mappings of space-time manifolds”, Tensor, N.S., 54 (1993), 91–100 | MR

[66] Aminova A. V., “Groups of transformations of pseudo-Riemannian manifolds in theoretical and mathematical physics”, In Memoriam N. I. Lobatschevskii. Vol. 3, part 2, Kazan, Izd-vo Kazan. un-ta, 1995, 79–103

[67] Aminova A. V., “Projective transformations of pseudo-Riemannian manifolds”, J. Math. Sci., 113:3 (2003), 367–470 | DOI | MR | Zbl

[68] Aminova A. V., Aminov N. A.-M., “Geometric theory of differential systems: Linearization criterion for systems of second-order ordinary differential equations with a 4-dimensional solvable symmetry group of the Lie–Petrov type VI.1”, J. Math. Sci., 158:2 (2009), 163–183 | DOI | MR | Zbl

[69] Anchordoqui L. A., Birman G. S., “Metric tensors for homogeneous, isotropic, five-dimensional pseudo-Riemannian models”, Rev. Colomb. Mat., 32 (1998), 73–79 | MR | Zbl

[70] Becerril R., Matos T., “Bonnor solution in five-dimensional gravity”, Phys. Rev. D., 41:6 (1990), 1895–1896 | DOI | MR

[71] Beltrami E., “Teoria fondamentale degli spazii di curvature costante”, Ann. Mat., 1868, no. 2, 232–255 | DOI | Zbl

[72] Bleyer U., Leibscher D. E., Polnarev A. G., “Mixed metric perturbation in Kaluza–Klein cosmologies”, Astron. Nachr., 311:3 (1990), 151–154 | DOI | MR

[73] Bleyer U., Leibscher D. E., Polnarev A. G., “Mixed metric perturbations in Kaluza–Klein cosmologies”, Nuovo Cim. B., 106:2 (1991), 107–122 | DOI | MR

[74] Bokhari A. H., Qadir A., “Symmetries of static, spherically symmetric space-times”, J. Math. Phys., 28 (1987), 1019–1022 | DOI | MR | Zbl

[75] Calvaruso G., Marinosci R. A., “Homogeneous geodesics in five-dimensional generalized symmetric spaces”, Balkan J. Geom. Appl., 8:1 (2003), 1–19 | MR | Zbl

[76] Coley A. A., Tupper B. O. J., “Special conformal Killing vector space-times and symmetry inheritance”, J. Math. Phys., 30 (1989), 2616–2625 | DOI | MR | Zbl

[77] Dacko P., Five dimensional almost para-cosymplectic manifolds with contact Ricci potential, arXiv: 1308.6429 [math.DG] | MR

[78] Dini U., “Sopra una problema che si presenta nella teoria generale delle rapprezentazioni geografiche di una superficie su di un'altra”, Ann. Mat., 3:7 (1869), 269–293 | DOI

[79] Dumitrescu T. T., Festuccia G., Seiberg N., Exploring curved superspace, arXiv: 1205.1115v2 [hep.th] | MR

[80] Fialowski A., Penkava M., “The moduli space of complex five-dimensional Lie algebras”, J. Algebra., 458 (2016), 422–-444 | DOI | MR | Zbl

[81] Fubini G., “Sui gruppi trasformazioni geodetiche”, Mem. Acc. Torino. Cl. Fif. Mat. Nat., 53:2 (1903), 261–313 | Zbl

[82] Fukui T., “The motion of a test particle in the Kaluza–Klein-type of gravitational theory with variable mass”, Astrophys. Space Sci., 141:2 (1988), 407–413 | DOI

[83] Fulton T., Rohrlich F., Witten L., “Conformal invariance in physics”, Rev. Mod. Phys., 34:3 (1962), 442–557 | DOI | MR

[84] Gall L., Mohaupt T., Five-dimensional vector multiplets in arbitrary signature, J. High Energy Phys., 2018, 2018 | DOI | MR

[85] Geroch R., “Limits of space-times”, Commun. Math. Phys., 13 (1969), 180–193 | DOI | MR

[86] Gezer A., “On infinitesimal conformal transformations of the tangent bundles with the synectic lift of a Riemannian metric”, Proc. Indian Acad. Sci. (Math. Sci.)., 119:3 (2009), 345–-350 | DOI | MR | Zbl

[87] Gross D. J., Perry M. J., “Magnetic monopoles in Kaluza–Klein theories”, Nucl. Phys., B226 (1983), 29–48 | DOI | MR

[88] Guendelman E. I., “Kaluza–Klein–Casimir cosmology with decoupled heavy modes”, Phys. Lett. B., 201:1 (1988), 39–41 | DOI

[89] Hall G. S., Rebouas M. J., Santos J., Teixeixa A. F. F., “On the algebraic structure of second order symmetric tensors in 5-dimensionai space-times”, Gen. Rel. Gravit., 8:9 (1996), 1107–1113 | DOI | MR

[90] Hicks J. W., “Algebraic properties of Killing vectors for Lorentz metrics in four dimensions”, All Graduate Plan B and other Reports., 102 (2011), 1–90

[91] Ho Choon-Lin, Ng Kin-Wang, “Wilson line breaking and vacuum stability in Kaluza–Klein cosmology”, Phys. Rev. D., 43:10 (1991), 3107–3111

[92] Jadczyk A., START in a five–dimensional conformal domain, arXiv: 1111.5540v2 [math-ph] | MR

[93] Kiselev A. S., Krechet V. G., “Static distributions of matter in the five-dimensional Riemann–-Weyl space”, Russ. Phys. J., 55:4 (2012), 417–-425 | DOI | MR | Zbl

[94] Knebelman M. S., “Homothetic mappings of Riemann spaces”, Proc. Am. Math. Soc., 9:6 (1958), 927–928 | DOI | MR

[95] Kokarev S. S., “Phantom scalar fields in five–dimensional Kaluza–Klein theory”, Russ. Phys. J., 39:2 (1996), 146–152 | DOI | MR

[96] Kollár J., “Einstein metrics on five-dimensional Seifert bundles”, J. Geom. Anal., 15:3 (2005), 445–476 | DOI | MR | Zbl

[97] Königs M. G., “Sur les géodésiques a intégrales quadratiques”, Darboux G. Leçons sur la théorie générale des surfaces. Vol. IV, Chelsea Publ., 1972, 368–-404 | MR

[98] Kovacs D., “The geodesic equation in five-dimensional relativity theory of Kaluza–Klein”, Gen. Rel. Gravit., 16:7 (1984), 645–655 | DOI | MR | Zbl

[99] Kowalski O., “Classification of generalized symmetric Riemannian spaces of dimension $n \leq 5$”, Rozpravy CSAV, Rada MPV., 1975, no. 85, 1–61 | MR | Zbl

[100] Kramer D. Stephani H., MacCallum M., Herlt E., Exact Solutions of Einstein's Field Equations, Cambridge Univ. Press, Cambridge, 1980 | MR

[101] Ladke L. S., Jaiswal V. K., Hiwarkar R. A., “Five-dimensional exact solutions of Bianchi type-I space-time in $f(R,T)$ theory of gravity”, Int. J. Innov. Res. Sci. Eng. Techn., 3:8 (2014), 15332–15342 | DOI

[102] Levi-Civita T., “Sulle trasformazioni delle equazioni dinamiche”, Ann. Mat., 24:2 (1896), 255–300 | DOI | Zbl

[103] Macedo P. G., New proposal for a five-dimensional unified theory of classical fields of Kaluza–Klein type, arXiv: gr-qc/0101121

[104] Magazev A. A., “Casimir functions for five-dimensional Lie groups with a non–semi-Hausdorff space of orbits”, Russ. Phys. J., 46:9 (2003), 912–-920 | DOI | MR

[105] Mankoc-Borstnik N., Pavsi M., “A systematic examination of five-dimensional Kaluza–Klein theory with sources consisting of point particles or strings”, Nuovo Cim., 99A:4 (1988), 489–507 | DOI | MR

[106] Marinosci R. A., “Classification of five-dimensional generalized pointwise symmetric Riemannian spaces”, Geom. Dedic., 57 (1995), 11–53 | DOI | MR | Zbl

[107] Mikesh J., Differential Geometry of Special Mappings, Palacky University, Olomouc, 2019 | MR | Zbl

[108] Mikesh J., Stepanova E., “A five-dimensional Riemannian manifold with an irreducible $SO(3)$-structure as a model of abstract statistical manifold”, Ann. Glob. Anal. Geom., 45 (2014), 111–-128 | DOI | MR | Zbl

[109] Mohanty G., Mahanta K. L., Bishi B. K., “Five dimensional cosmological models in Lyra geometry with time dependent displacement field”, Astrophys. Space Sci., 310 (2007), 273–-276 | DOI

[110] Paiva F. M., Rebouca M. J., Teixeira A. F. F., “Limits of space–times in five dimensions and their relation to the Segre types”, J. Math. Phys., 38 (1997), 4228–4236 | DOI | MR | Zbl

[111] Pan Yiwen, Rigid supersymmetry on five-dimensional Riemannian manifolds and contact geometry, arXiv: 1308.1567v4 [hep.th] | MR

[112] Pini A., Rodriguez-Gomez D., Schmudea J., Rigid supersymmetry from conformal supergravity in five dimensions, arXiv: 1504.04340v3 [het-th] | MR

[113] Rcheulishvili G., Spherically symmetric line element and Killing vectors in five-dimensional space, Preprint ICTP, IC/92/108, Miramare-Trieste, 1992 | MR

[114] Rcheulishvili G. L., “The curvature and the algebra of Killing vectors in five-dimensional space”, J. Math. Phys., 33 (1992), 1103–1108 | DOI | MR | Zbl

[115] Rcheulishvili G. L., Conformal Killing vectors in five-dimensional space, arXiv: gr-qc/9312004v1

[116] Rebouças M. J., Santos J., Teixeira A. F. F., “Classification of energy momentum tensors in $n>5$ dimensional space-times: A review”, Brazil. J. Phys., 34:2A (2004), 535–543

[117] Rodroguez-Vallarte M. C., Salgado G., “Five-dimensional indecomposable contact Lie algebras as double extensions”, J. Geom. Phys., 100 (2016), 20–-32 | DOI | MR

[118] Santos J., Rebouças M. J., Teixeira A. F. F., “Classification of second order symmetric tensors in five-dimensional Kaluza–-Klein-type theories”, J. Math. Phys., 36 (1995), 3074–3084 | DOI | MR | Zbl

[119] Schur F., “Über den Zusammenhang der Räume konstanter Krümmungsmasses mit den projectiven Räumen”, Math. Ann., 27 (1886), 537–567 | DOI | MR

[120] Starks S. A., Kosheleva O., Kreinovich V., Kaluza–Klein 5D ideas made fully geometric, arXiv: 0506218v1 [physics.class-ph] | MR

[121] Varaksin O. L., Klishevich V. V., “Integration of Dirac equation in Riemannian spaces with five-dimensional group of motions”, Russ. Phys. J., 40:8 (1997), 727–-731 | DOI | MR

[122] Wesson P. S., “A physical interpretation of Kaluza–Klein cosmology”, Astrophys. J., 394:1 (1992), 19–-24 | DOI

[123] Wesson P. S., “The properties of matter in Kaluza–Klein cosmology”, Mod. Phys. Lett. A., 7:11 (1992), 921–926 | DOI | MR

[124] Witten E., “Search for a realistic Kaluza–Klein theory”, Nucl. Phys. B., 186 (1981), 412–428 | DOI | MR

[125] Yano K., “On harmonic and Killing vectors”, Ann. Math., 55 (1952), 38–-45 | DOI | MR | Zbl

[126] Zeghib A., “On discrete projective transformation groups of Riemannian manifolds”, Adv. Math., 297 (2016), 26–-53 | DOI | MR | Zbl