Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_212_a1, author = {A. V. Aminova and D. R. Khakimov}, title = {Lie algebras of projective motions of five-dimensional {pseudo-Riemannian} spaces. {I.} {Preliminaries}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {10--29}, publisher = {mathdoc}, volume = {212}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_212_a1/} }
TY - JOUR AU - A. V. Aminova AU - D. R. Khakimov TI - Lie algebras of projective motions of five-dimensional pseudo-Riemannian spaces. I. Preliminaries JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 10 EP - 29 VL - 212 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_212_a1/ LA - ru ID - INTO_2022_212_a1 ER -
%0 Journal Article %A A. V. Aminova %A D. R. Khakimov %T Lie algebras of projective motions of five-dimensional pseudo-Riemannian spaces. I. Preliminaries %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 10-29 %V 212 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_212_a1/ %G ru %F INTO_2022_212_a1
A. V. Aminova; D. R. Khakimov. Lie algebras of projective motions of five-dimensional pseudo-Riemannian spaces. I. Preliminaries. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 212 (2022), pp. 10-29. http://geodesic.mathdoc.fr/item/INTO_2022_212_a1/
[1] Aminova A. V., “Gruppy proektivnykh preobrazovanii nekotorykh polei tyagoteniya”, Gravit. teoriya otnosit., 1970, no. 7, 127–131
[2] Aminova A. V., “O polyakh tyagoteniya, dopuskayuschikh gruppy proektivnykh dvizhenii”, Dokl. AN SSSR., 197:4 (1971), 807–809
[3] Aminova A. V., “Proektivnye gruppy v polyakh tyagoteniya. I”, Gravit. teoriya otnosit., 1971, no. 8, 3–-13
[4] Aminova A. V., “Proektivnye gruppy v polyakh tyagoteniya. II”, Gravit. teoriya otnosit., 1971, no. 8, 14–20
[5] Aminova A. V., O beskonechno malykh preobrazovaniyakh, sokhranyayuschikh traektorii probnykh tel, Preprint ITF AN USSR 71-85R, Kiev, 1971
[6] Aminova A. V., “Proektivno-gruppovye svoistva nekotorykh rimanovykh prostranstv”, Tr. Geom. semin. VINITI AN SSSR., 6 (1974), 295–316 | Zbl
[7] Aminova A. V., “Gruppy proektivnykh i affinnykh dvizhenii v prostranstvakh obschei teorii otnositelnosti”, Tr. Geom. semin. VINITI AN SSSR., 6 (1974), 317–346 | Zbl
[8] Aminova A. V., “Proektivnye gruppy v prostranstvakh-vremenakh, dopuskayuschikh dva postoyannykh vektornykh polya”, Gravit. teoriya otnosit., 1976, no. 10, 9–22
[9] Aminova A. V., “Ob integrirovanii kovariantnogo differentsialnogo uravneniya pervogo poryadka i geodezicheskom otobrazhenii rimanovykh prostranstv proizvolnoi signatury i razmernosti”, Izv. vuzov. Mat., 1988, no. 1, 3–13
[10] Aminova A. V., “Gruppy preobrazovanii rimanovykh mnogoobrazii”, Itogi nauki tekhn. Ser. Probl. geom. VINITI., 22 (1990), 97–165 | Zbl
[11] Aminova A. V., “Psevdorimanovy mnogoobraziya s obschimi geodezicheskimi”, Usp. mat. nauk., 48:2 (290) (1993), 107–164 | MR | Zbl
[12] Aminova A. V., “Algebry Li infinitezimalnykh proektivnykh preobrazovanii lorentsevykh mnogoobrazii”, Usp. mat. nauk., 50:1 (1995), 69–142 | MR | Zbl
[13] Aminova A. V., Proektivnye preobrazovaniya psevdorimanovykh mnogoobrazii, Yanus-K, M., 2003
[14] Aminova A. V., “Proektivnye simmetrii i zakony sokhraneniya v $K$-prostranstvakh, opredelyaemykh polyami tyagoteniya”, Izv. vuzov. Fizika., 51:4 (2008), 30–37 | MR | Zbl
[15] Aminova A. V., Aminov N. A.-M., “Proektivno-geometricheskaya teoriya sistem differentsialnykh uravnenii vtorogo poryadka: teoremy vypryamleniya i simmetrii”, Mat. sb., 201:5 (2010), 3–13 | MR
[16] Aminova A. V., Proektivnye simmetrii gravitatsionnykh polei, Izd-vo Kazan. un-ta, Kazan, 2018
[17] Aminova A. V., Aminov N. A.-M., “Proektivnaya geometriya sistem differentsialnykh uravnenii vtorogo poryadka”, Mat. sb., 197:7 (2006), 3–28 | MR | Zbl
[18] Aminova A. V., Aminov N. A.-M., “Prostranstva s proektivnoi svyaznostyu Kartana i gruppovoi analiz sistem obyknovennykh differentsialnykh uravnenii vtorogo poryadka”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obzory., 123 (2009), 58–80 | MR
[19] Aminova A. V., Khakimov D. R., “O proektivnykh dvizheniyakh pyatimernykh prostranstv spetsialnogo vida”, Izv. vuzov. Mat., 2017, no. 5, 97–102 | Zbl
[20] Aminova A. V., Khakimov D. R., “O proektivnykh dvizheniyakh pyatimernykh prostranstv. I. $H$-prostranstva tipa $\{32\}$”, Prostranstvo, vremya i fundamentalnye vzaimodeistviya., 2018, no. 4, 21–31
[21] Aminova A. V., Khakimov D. R., “O proektivnykh dvizheniyakh pyatimernykh prostranstv. II. $H$-prostranstva tipa $\{41\}$”, Prostranstvo, vremya i fundamentalnye vzaimodeistviya., 2019, no. 1, 45–55
[22] Aminova A. V., Khakimov D. R., “O proektivnykh dvizheniyakh pyatimernykh prostranstv. III. $H$-prostranstva tipa $\{5\}$”, Prostranstvo, vremya i fundamentalnye vzaimodeistviya., 2019, no. 1, 56—66
[23] Aminova A. V., Khakimov D. R., “$H$-prostranstva $(H_{41}, g)$ tipa $\{41\}$: proektivno-gruppovye svoistva”, Prostranstvo, vremya i fundamentalnye vzaimodeistviya., 2019, no. 4, 4–12
[24] Aminova A. V., Khakimov D. R., “Proektivno-gruppovye svoistva $h$-prostranstv tipa $\{221\}$”, Izv. vuzov. Mat., 2019, no. 10, 87–93 | Zbl
[25] Aminova A. V., Khakimov D. R., “Proektivno-gruppovye svoistva $h$-prostranstv $H_5$ tipa $\{5\}$”, Prostranstvo, vremya i fundamentalnye vzaimodeistviya., 2020, no. 1, 4–11
[26] Aminova A. V., Khakimov D. R., “O svoistvakh proektivnykh algebr Li zhestkikh $h$-prostranstv $H_{32}$ tipa $\{32\}$”, Uch. zap. Kazan. un-ta. Ser. Fiz.-mat. nauki., 162:2 (2020), 111–119 | MR
[27] Aminova A. V., Khakimov D. R., “Algebry Li proektivnykh dvizhenii pyatimernykh $h$-prostranstv $H_{221}$ tipa $\{221\}$”, Izv. vuzov. Mat., 2021, no. 12, 9–22 | Zbl
[28] Budanov K. M., Sultanov A. Ya., “Infinitezimalnye affinnye preobrazovaniya rassloeniya Veilya vtorogo poryadka so svyaznostyu polnogo lifta”, Izv. vuzov. Mat., 2015, no. 12, 3–-13 | MR | Zbl
[29] Gladush V. D., “Pyatimernaya obschaya teoriya otnositelnosti i teoriya Kalutsy––Kleina”, Teor. mat. fiz., 136:3 (2003), 480–-495 | MR | Zbl
[30] Golikov V. I., “O geodezicheskom otobrazhenii polei tyagoteniya obschego vida”, Tr. semin. vekt. tenz. anal., 1963, no. 12, 97–129 | MR | Zbl
[31] Egorov I. P., Dvizheniya v prostranstvakh affinnoi svyaznosti, Izd-vo Kazan. un-ta, Kazan, 1965 | MR
[32] Zhukova L. I., “Rimanovy prostranstva s proektivnoi gruppoi”, Uch. zap. Penzensk. ped. in-ta., 124 (1971), 13–-18
[33] Zhukova L. I., “Proektivnye preobrazovaniya v rimanovykh prostranstvakh (izotropnyi sluchai)”, Uch. zap. Penzensk. ped. in-ta., 124 (1971), 19–25
[34] Zhukova L. I., “O gruppakh proektivnykh preobrazovanii nekotorykh rimanovykh prostranstv”, Uch. zap. Penzensk. ped. in-ta., 124 (1971), 26–30
[35] Zhukova L. I., “Rimanovy prostranstva, dopuskayuschie proektivnye preobrazovaniya”, Izv. vuzov. Mat., 1973, no. 6, 37–41 | Zbl
[36] Kiselev A. S., “Kosmologicheskaya problema v pyatimernom prostranstve-vremeni”, Yaroslav. ped. vestn. Ser. Fiz.-mat. estestv. nauki., 2010, no. 1, 64–67
[37] Kiselev A. S., Krechet V. G., “Kosmologicheskaya problema v pyatimernom prostranstve Rimana—Veilya s idealnoi zhidkostyu”, Yaroslav. ped. vestn. Ser. Fiz.-mat. estestv. nauki., 3:1 (2011), 37–41
[38] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii. T. 1-2, Nauka, M., 1981 | MR
[39] Krechet V. G., Levkoeva M. V., Sadovnikov D. V., “Geometricheskaya teoriya elektromagnitnogo polya v pyatimernom affinno-metricheskom prostranstve”, Vestn. RUDN. Ser. Fiz., 1:9 (2001), 33–-37
[40] Kruchkovich G. I., “Uravneniya poluprivodimosti i geodezicheskoe sootvetstvie prostranstv Lorentsa”, Tr. Vsesoyuz. zaoch. energetich. in-ta., 1963, no. 24, 74–87
[41] Kruchkovich G. I., “O prostranstvakh $V(K)$ i ikh geodezicheskikh otobrazheniyakh”, Tr. Vsesoyuz. zaoch. energetich. in-ta., 1967, no. 33, 3–-18
[42] Petrov A. Z., “O geodezicheskom otobrazhenii rimanovykh prostranstv neopredelennoi metriki”, Uch. zap. Kazan. un-ta., 109:3 (1949), 7–36
[43] Postnikov M. M., Lektsii po geometrii. Semestr V. Rimanova geometriya, M., 1998
[44] Rcheulishvili G. L., “Sfericheski-simmetrichnyi lineinyi element i vektory Killinga v pyatimernom prostranstve”, Teor. mat. fiz., 102:3 (1995), 345–-351 | MR | Zbl
[45] Rcheulishvili G. L., “Obobschennye vektory Killinga v pyatimernom lorentsevom prostranstve”, Teor. mat. fiz., 112:2 (1997), 249–-253 | MR | Zbl
[46] Sinyukov N. S., “O geodezicheskom otobrazhenii rimanovykh prostranstv na simmetricheskie rimanovy prostranstva”, Dokl. AN SSSR., 98:1 (1954), 21–-23 | MR | Zbl
[47] Sinyukov N. S., “Normalnye geodezicheskie otobrazheniya rimanovykh prostranstv”, Dokl. AN SSSR., 111:4 (1956), 266–-267 | MR
[48] Sinyukov N. S., “Ekvidistantnye rimanovy prostranstva”, Nauchn. ezhegod. Odessa., 1957, 133–-135
[49] Sinyukov N. S., “Ob odnom invariantnom preobrazovanii rimanovykh prostranstv s obschimi geodezicheskimi”, Dokl. AN SSSR., 137:6 (1961), 1312–1314 | Zbl
[50] Sinyukov N. S., “Pochti geodezicheskie otobrazheniya affinnosvyaznykh i rimanovykh prostranstv”, Dokl. AN SSSR., 151:4 (1963), 781–782 | MR | Zbl
[51] Sinyukov N. S., “K teorii geodezicheskogo otobrazheniya rimanovykh prostranstv”, Dokl. AN SSSR., 169:4 (1966), 770–-772 | Zbl
[52] Sinyukov N. S., Geodezicheskie otobrazheniya rimanovykh prostranstv, Nauka, M., 1979 | MR
[53] Solodovnikov A. S., “Proektivnye preobrazovaniya rimanovykh prostranstv”, Usp. mat. nauk., 11 (1956), 45–116 | Zbl
[54] Solodovnikov A. S., “Prostranstva s obschimi geodezicheskimi”, Dokl. AN SSSR., 108:2 (1956), 201–203 | MR | Zbl
[55] Solodovnikov A. S., “Geodezicheskie klassy prostranstv $V(K)$”, Dokl. AN SSSR., 111:1 (1956), 33–36 | MR | Zbl
[56] Solodovnikov A. S., “Prostranstva s obschimi geodezicheskimi”, Tr. semin. vekt. tenz. anal., 1961, no. 2, 43–102 | MR | Zbl
[57] Trunev A. P., “Fundamentalnye vzaimodeistviya v teorii Kalutsy"– Kleina”, Nauch. zh. Kuban. gos. agr. un-ta., 71:7 (2011), 1–26
[58] Sharafutdinov V. A., Vvedenie v differentsialnuyu topologiyu i rimanovu geometriyu, IPTs NGU, Novosibirsk:, 2018
[59] Shirokov P. A., Tenzornoe ischislenie, Izd-vo KGU, Kazan, 1961
[60] Shirokov P. A., Izbrannye trudy po geometrii, Izd-vo KGU, Kazan, 1966 | MR
[61] Eizenkhart L. P., Nepreryvnye gruppy preobrazovanii, IL, M., 1947
[62] Eizenkhart L. P., Rimanova geometriya, IL, M., 1948
[63] Abe O., “Gravitational-wave propagation in the five-dimensional Kaluza–Klein space-time”, Nuovo Cim. B., 109:6 (1994), 659–-673 | DOI | MR
[64] Aminova A. V., “On geodesic mappings of Riemannian spaces”, Tensor., 46 (1987), 179–186 | Zbl
[65] Aminova A. V., “Group-invariant methods in the theory of projective mappings of space-time manifolds”, Tensor, N.S., 54 (1993), 91–100 | MR
[66] Aminova A. V., “Groups of transformations of pseudo-Riemannian manifolds in theoretical and mathematical physics”, In Memoriam N. I. Lobatschevskii. Vol. 3, part 2, Kazan, Izd-vo Kazan. un-ta, 1995, 79–103
[67] Aminova A. V., “Projective transformations of pseudo-Riemannian manifolds”, J. Math. Sci., 113:3 (2003), 367–470 | DOI | MR | Zbl
[68] Aminova A. V., Aminov N. A.-M., “Geometric theory of differential systems: Linearization criterion for systems of second-order ordinary differential equations with a 4-dimensional solvable symmetry group of the Lie–Petrov type VI.1”, J. Math. Sci., 158:2 (2009), 163–183 | DOI | MR | Zbl
[69] Anchordoqui L. A., Birman G. S., “Metric tensors for homogeneous, isotropic, five-dimensional pseudo-Riemannian models”, Rev. Colomb. Mat., 32 (1998), 73–79 | MR | Zbl
[70] Becerril R., Matos T., “Bonnor solution in five-dimensional gravity”, Phys. Rev. D., 41:6 (1990), 1895–1896 | DOI | MR
[71] Beltrami E., “Teoria fondamentale degli spazii di curvature costante”, Ann. Mat., 1868, no. 2, 232–255 | DOI | Zbl
[72] Bleyer U., Leibscher D. E., Polnarev A. G., “Mixed metric perturbation in Kaluza–Klein cosmologies”, Astron. Nachr., 311:3 (1990), 151–154 | DOI | MR
[73] Bleyer U., Leibscher D. E., Polnarev A. G., “Mixed metric perturbations in Kaluza–Klein cosmologies”, Nuovo Cim. B., 106:2 (1991), 107–122 | DOI | MR
[74] Bokhari A. H., Qadir A., “Symmetries of static, spherically symmetric space-times”, J. Math. Phys., 28 (1987), 1019–1022 | DOI | MR | Zbl
[75] Calvaruso G., Marinosci R. A., “Homogeneous geodesics in five-dimensional generalized symmetric spaces”, Balkan J. Geom. Appl., 8:1 (2003), 1–19 | MR | Zbl
[76] Coley A. A., Tupper B. O. J., “Special conformal Killing vector space-times and symmetry inheritance”, J. Math. Phys., 30 (1989), 2616–2625 | DOI | MR | Zbl
[77] Dacko P., Five dimensional almost para-cosymplectic manifolds with contact Ricci potential, arXiv: 1308.6429 [math.DG] | MR
[78] Dini U., “Sopra una problema che si presenta nella teoria generale delle rapprezentazioni geografiche di una superficie su di un'altra”, Ann. Mat., 3:7 (1869), 269–293 | DOI
[79] Dumitrescu T. T., Festuccia G., Seiberg N., Exploring curved superspace, arXiv: 1205.1115v2 [hep.th] | MR
[80] Fialowski A., Penkava M., “The moduli space of complex five-dimensional Lie algebras”, J. Algebra., 458 (2016), 422–-444 | DOI | MR | Zbl
[81] Fubini G., “Sui gruppi trasformazioni geodetiche”, Mem. Acc. Torino. Cl. Fif. Mat. Nat., 53:2 (1903), 261–313 | Zbl
[82] Fukui T., “The motion of a test particle in the Kaluza–Klein-type of gravitational theory with variable mass”, Astrophys. Space Sci., 141:2 (1988), 407–413 | DOI
[83] Fulton T., Rohrlich F., Witten L., “Conformal invariance in physics”, Rev. Mod. Phys., 34:3 (1962), 442–557 | DOI | MR
[84] Gall L., Mohaupt T., Five-dimensional vector multiplets in arbitrary signature, J. High Energy Phys., 2018, 2018 | DOI | MR
[85] Geroch R., “Limits of space-times”, Commun. Math. Phys., 13 (1969), 180–193 | DOI | MR
[86] Gezer A., “On infinitesimal conformal transformations of the tangent bundles with the synectic lift of a Riemannian metric”, Proc. Indian Acad. Sci. (Math. Sci.)., 119:3 (2009), 345–-350 | DOI | MR | Zbl
[87] Gross D. J., Perry M. J., “Magnetic monopoles in Kaluza–Klein theories”, Nucl. Phys., B226 (1983), 29–48 | DOI | MR
[88] Guendelman E. I., “Kaluza–Klein–Casimir cosmology with decoupled heavy modes”, Phys. Lett. B., 201:1 (1988), 39–41 | DOI
[89] Hall G. S., Rebouas M. J., Santos J., Teixeixa A. F. F., “On the algebraic structure of second order symmetric tensors in 5-dimensionai space-times”, Gen. Rel. Gravit., 8:9 (1996), 1107–1113 | DOI | MR
[90] Hicks J. W., “Algebraic properties of Killing vectors for Lorentz metrics in four dimensions”, All Graduate Plan B and other Reports., 102 (2011), 1–90
[91] Ho Choon-Lin, Ng Kin-Wang, “Wilson line breaking and vacuum stability in Kaluza–Klein cosmology”, Phys. Rev. D., 43:10 (1991), 3107–3111
[92] Jadczyk A., START in a five–dimensional conformal domain, arXiv: 1111.5540v2 [math-ph] | MR
[93] Kiselev A. S., Krechet V. G., “Static distributions of matter in the five-dimensional Riemann–-Weyl space”, Russ. Phys. J., 55:4 (2012), 417–-425 | DOI | MR | Zbl
[94] Knebelman M. S., “Homothetic mappings of Riemann spaces”, Proc. Am. Math. Soc., 9:6 (1958), 927–928 | DOI | MR
[95] Kokarev S. S., “Phantom scalar fields in five–dimensional Kaluza–Klein theory”, Russ. Phys. J., 39:2 (1996), 146–152 | DOI | MR
[96] Kollár J., “Einstein metrics on five-dimensional Seifert bundles”, J. Geom. Anal., 15:3 (2005), 445–476 | DOI | MR | Zbl
[97] Königs M. G., “Sur les géodésiques a intégrales quadratiques”, Darboux G. Leçons sur la théorie générale des surfaces. Vol. IV, Chelsea Publ., 1972, 368–-404 | MR
[98] Kovacs D., “The geodesic equation in five-dimensional relativity theory of Kaluza–Klein”, Gen. Rel. Gravit., 16:7 (1984), 645–655 | DOI | MR | Zbl
[99] Kowalski O., “Classification of generalized symmetric Riemannian spaces of dimension $n \leq 5$”, Rozpravy CSAV, Rada MPV., 1975, no. 85, 1–61 | MR | Zbl
[100] Kramer D. Stephani H., MacCallum M., Herlt E., Exact Solutions of Einstein's Field Equations, Cambridge Univ. Press, Cambridge, 1980 | MR
[101] Ladke L. S., Jaiswal V. K., Hiwarkar R. A., “Five-dimensional exact solutions of Bianchi type-I space-time in $f(R,T)$ theory of gravity”, Int. J. Innov. Res. Sci. Eng. Techn., 3:8 (2014), 15332–15342 | DOI
[102] Levi-Civita T., “Sulle trasformazioni delle equazioni dinamiche”, Ann. Mat., 24:2 (1896), 255–300 | DOI | Zbl
[103] Macedo P. G., New proposal for a five-dimensional unified theory of classical fields of Kaluza–Klein type, arXiv: gr-qc/0101121
[104] Magazev A. A., “Casimir functions for five-dimensional Lie groups with a non–semi-Hausdorff space of orbits”, Russ. Phys. J., 46:9 (2003), 912–-920 | DOI | MR
[105] Mankoc-Borstnik N., Pavsi M., “A systematic examination of five-dimensional Kaluza–Klein theory with sources consisting of point particles or strings”, Nuovo Cim., 99A:4 (1988), 489–507 | DOI | MR
[106] Marinosci R. A., “Classification of five-dimensional generalized pointwise symmetric Riemannian spaces”, Geom. Dedic., 57 (1995), 11–53 | DOI | MR | Zbl
[107] Mikesh J., Differential Geometry of Special Mappings, Palacky University, Olomouc, 2019 | MR | Zbl
[108] Mikesh J., Stepanova E., “A five-dimensional Riemannian manifold with an irreducible $SO(3)$-structure as a model of abstract statistical manifold”, Ann. Glob. Anal. Geom., 45 (2014), 111–-128 | DOI | MR | Zbl
[109] Mohanty G., Mahanta K. L., Bishi B. K., “Five dimensional cosmological models in Lyra geometry with time dependent displacement field”, Astrophys. Space Sci., 310 (2007), 273–-276 | DOI
[110] Paiva F. M., Rebouca M. J., Teixeira A. F. F., “Limits of space–times in five dimensions and their relation to the Segre types”, J. Math. Phys., 38 (1997), 4228–4236 | DOI | MR | Zbl
[111] Pan Yiwen, Rigid supersymmetry on five-dimensional Riemannian manifolds and contact geometry, arXiv: 1308.1567v4 [hep.th] | MR
[112] Pini A., Rodriguez-Gomez D., Schmudea J., Rigid supersymmetry from conformal supergravity in five dimensions, arXiv: 1504.04340v3 [het-th] | MR
[113] Rcheulishvili G., Spherically symmetric line element and Killing vectors in five-dimensional space, Preprint ICTP, IC/92/108, Miramare-Trieste, 1992 | MR
[114] Rcheulishvili G. L., “The curvature and the algebra of Killing vectors in five-dimensional space”, J. Math. Phys., 33 (1992), 1103–1108 | DOI | MR | Zbl
[115] Rcheulishvili G. L., Conformal Killing vectors in five-dimensional space, arXiv: gr-qc/9312004v1
[116] Rebouças M. J., Santos J., Teixeira A. F. F., “Classification of energy momentum tensors in $n>5$ dimensional space-times: A review”, Brazil. J. Phys., 34:2A (2004), 535–543
[117] Rodroguez-Vallarte M. C., Salgado G., “Five-dimensional indecomposable contact Lie algebras as double extensions”, J. Geom. Phys., 100 (2016), 20–-32 | DOI | MR
[118] Santos J., Rebouças M. J., Teixeira A. F. F., “Classification of second order symmetric tensors in five-dimensional Kaluza–-Klein-type theories”, J. Math. Phys., 36 (1995), 3074–3084 | DOI | MR | Zbl
[119] Schur F., “Über den Zusammenhang der Räume konstanter Krümmungsmasses mit den projectiven Räumen”, Math. Ann., 27 (1886), 537–567 | DOI | MR
[120] Starks S. A., Kosheleva O., Kreinovich V., Kaluza–Klein 5D ideas made fully geometric, arXiv: 0506218v1 [physics.class-ph] | MR
[121] Varaksin O. L., Klishevich V. V., “Integration of Dirac equation in Riemannian spaces with five-dimensional group of motions”, Russ. Phys. J., 40:8 (1997), 727–-731 | DOI | MR
[122] Wesson P. S., “A physical interpretation of Kaluza–Klein cosmology”, Astrophys. J., 394:1 (1992), 19–-24 | DOI
[123] Wesson P. S., “The properties of matter in Kaluza–Klein cosmology”, Mod. Phys. Lett. A., 7:11 (1992), 921–926 | DOI | MR
[124] Witten E., “Search for a realistic Kaluza–Klein theory”, Nucl. Phys. B., 186 (1981), 412–428 | DOI | MR
[125] Yano K., “On harmonic and Killing vectors”, Ann. Math., 55 (1952), 38–-45 | DOI | MR | Zbl
[126] Zeghib A., “On discrete projective transformation groups of Riemannian manifolds”, Adv. Math., 297 (2016), 26–-53 | DOI | MR | Zbl