Variational optimality condition in a control problem of a linear first-order hyperbolic system with boundary delay
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 212 (2022), pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine a linear optimal-control problem for a first-order hyperbolic system in which a boundary condition at one of the ends is determined from a controlled system of ordinary differential equations with constant state lag. The approach proposed is based on the use of an exact formula for the increment of the cost functional. The reduced problem can be solved by various effective methods used for optimization problems in systems of ordinary differential equations.
Keywords: hyperbolic system, system with delay, optimality condition.
Mots-clés : exact increment formula
@article{INTO_2022_212_a0,
     author = {A. V. Arguchintsev and V. P. Poplevko},
     title = {Variational optimality condition in a control problem of a linear first-order hyperbolic system with boundary delay},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--9},
     publisher = {mathdoc},
     volume = {212},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_212_a0/}
}
TY  - JOUR
AU  - A. V. Arguchintsev
AU  - V. P. Poplevko
TI  - Variational optimality condition in a control problem of a linear first-order hyperbolic system with boundary delay
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 3
EP  - 9
VL  - 212
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_212_a0/
LA  - ru
ID  - INTO_2022_212_a0
ER  - 
%0 Journal Article
%A A. V. Arguchintsev
%A V. P. Poplevko
%T Variational optimality condition in a control problem of a linear first-order hyperbolic system with boundary delay
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 3-9
%V 212
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_212_a0/
%G ru
%F INTO_2022_212_a0
A. V. Arguchintsev; V. P. Poplevko. Variational optimality condition in a control problem of a linear first-order hyperbolic system with boundary delay. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 212 (2022), pp. 3-9. http://geodesic.mathdoc.fr/item/INTO_2022_212_a0/

[1] Alekseev V. V., Kryshev I. I., Sazykina T. G., Fizicheskoe i matematicheskoe modelirovanie ekosistem, Gidrometeoizdat, SPb., 1992

[2] Arguchintsev A. V., Optimalnoe upravlenie giperbolicheskimi sistemami, Fizmatlit, M., 2007

[3] Arguchintsev A. V., Poplevko V. P., “Optimalnoe upravlenie v zadache khimicheskoi rektifikatsii”, Izv. vuzov. Mat., 2012, no. 8, 53–57 | Zbl

[4] Bokov G. V., “Printsip maksimuma Pontryagina v zadache s vremennym zapazdyvaniem”, Fundam. prikl. mat., 15:5 (2009), 3–19

[5] Gabasov R., Churakova S. V., “O suschestvovanii optimalnykh upravlenii v sistemakh s zapazdyvaniem”, Differ. uravn., 3:12 (1967), 2067–2080 | Zbl

[6] Godunov S. K., Uravneniya matematicheskoi fiziki, Nauka, M., 1979 | MR

[7] Demidenko N. D., Potapov V. I., Shokin Yu. I., Modelirovanie i optimizatsiya sistem s raspredelennymi parametrami, Nauka, Novosibirsk, 2006

[8] Mansimov K. B., Mastaliev R. O., “Neobkhodimye usloviya optimalnosti kvaziosobykh upravlenii v zadache optimalnogo upravleniya stokhasticheskoi sistemoi s zapazdyvayuschim argumentom”, Program. sist.: Teoriya i prilozh., 11:2 (2020), 3–22

[9] Srochko V. A., Aksenyushkina E. V., “Parametrizatsiya nekotorykh zadach upravleniya lineinymi sistemami”, Izv. Irkutsk. gos. un-ta. Ser. mat., 30 (2019), 83–98 | MR | Zbl

[10] Srochko V. A., Antonik V. G. , “Usloviya optimalnosti ekstremalnykh upravlenii dlya bilineinoi i kvadratichnoi zadach”, Izv. vuzov. Matem., 2016, no. 5, 86–92 | MR | Zbl

[11] Srochko V. A., Pudalova E. I., “Metody nelokalnogo uluchsheniya dopustimykh upravlenii v lineinykh zadachakh s zapazdyvaniem”, Izv. vuzov. Mat., 2000, no. 12, 76–86 | Zbl

[12] Kharatishvili G. L., “Printsip maksimuma v teorii optimalnykh protsessov s zapazdyvaniem”, Dokl. AN SSSR., 136:1 (1961), 39–42 | Zbl

[13] Arguchintsev A. V., Poplevko V. P., “An optimal control problem by a hyperbolic system with boundary delay”, Izv. Irkutsk. gos. un-ta. Ser. mat., 35 (2021), 3–17 | MR | Zbl

[14] Arguchintsev A., Poplevko V., “An optimal control problem by a hybrid system of hyperbolic and ordinary differential equations”, Games., 12:1 (2021), 23 | DOI | MR | Zbl

[15] Biral F., Bertolazzi E., Bosetti P., “Notes on numerical methods for solving optimal control problems”, IEEE J. Ind. Appl., 5 (2016), 154–166 | DOI

[16] Demidenko N., Kulagina L., “Optimal control of thermal-engineering processes in tube furnaces”, Chem. Petrol. Eng., 42:3 (2006), 128–130 | DOI | MR

[17] Frankena J. F., “Optimal control problems with delay, the maximum principle and necessary conditions”, J. Eng. Math., 9:1 (1975), 53–64 | DOI | MR | Zbl

[18] Golfetto W., Fernandes S. Silva, “A review of gradient algorithms for numerical computation of optimal trajectories”, J. Aerosp. Technol. Manag., 4 (2012), 131–143 | DOI