Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_212_a0, author = {A. V. Arguchintsev and V. P. Poplevko}, title = {Variational optimality condition in a control problem of a linear first-order hyperbolic system with boundary delay}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--9}, publisher = {mathdoc}, volume = {212}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_212_a0/} }
TY - JOUR AU - A. V. Arguchintsev AU - V. P. Poplevko TI - Variational optimality condition in a control problem of a linear first-order hyperbolic system with boundary delay JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 3 EP - 9 VL - 212 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_212_a0/ LA - ru ID - INTO_2022_212_a0 ER -
%0 Journal Article %A A. V. Arguchintsev %A V. P. Poplevko %T Variational optimality condition in a control problem of a linear first-order hyperbolic system with boundary delay %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 3-9 %V 212 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_212_a0/ %G ru %F INTO_2022_212_a0
A. V. Arguchintsev; V. P. Poplevko. Variational optimality condition in a control problem of a linear first-order hyperbolic system with boundary delay. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 212 (2022), pp. 3-9. http://geodesic.mathdoc.fr/item/INTO_2022_212_a0/
[1] Alekseev V. V., Kryshev I. I., Sazykina T. G., Fizicheskoe i matematicheskoe modelirovanie ekosistem, Gidrometeoizdat, SPb., 1992
[2] Arguchintsev A. V., Optimalnoe upravlenie giperbolicheskimi sistemami, Fizmatlit, M., 2007
[3] Arguchintsev A. V., Poplevko V. P., “Optimalnoe upravlenie v zadache khimicheskoi rektifikatsii”, Izv. vuzov. Mat., 2012, no. 8, 53–57 | Zbl
[4] Bokov G. V., “Printsip maksimuma Pontryagina v zadache s vremennym zapazdyvaniem”, Fundam. prikl. mat., 15:5 (2009), 3–19
[5] Gabasov R., Churakova S. V., “O suschestvovanii optimalnykh upravlenii v sistemakh s zapazdyvaniem”, Differ. uravn., 3:12 (1967), 2067–2080 | Zbl
[6] Godunov S. K., Uravneniya matematicheskoi fiziki, Nauka, M., 1979 | MR
[7] Demidenko N. D., Potapov V. I., Shokin Yu. I., Modelirovanie i optimizatsiya sistem s raspredelennymi parametrami, Nauka, Novosibirsk, 2006
[8] Mansimov K. B., Mastaliev R. O., “Neobkhodimye usloviya optimalnosti kvaziosobykh upravlenii v zadache optimalnogo upravleniya stokhasticheskoi sistemoi s zapazdyvayuschim argumentom”, Program. sist.: Teoriya i prilozh., 11:2 (2020), 3–22
[9] Srochko V. A., Aksenyushkina E. V., “Parametrizatsiya nekotorykh zadach upravleniya lineinymi sistemami”, Izv. Irkutsk. gos. un-ta. Ser. mat., 30 (2019), 83–98 | MR | Zbl
[10] Srochko V. A., Antonik V. G. , “Usloviya optimalnosti ekstremalnykh upravlenii dlya bilineinoi i kvadratichnoi zadach”, Izv. vuzov. Matem., 2016, no. 5, 86–92 | MR | Zbl
[11] Srochko V. A., Pudalova E. I., “Metody nelokalnogo uluchsheniya dopustimykh upravlenii v lineinykh zadachakh s zapazdyvaniem”, Izv. vuzov. Mat., 2000, no. 12, 76–86 | Zbl
[12] Kharatishvili G. L., “Printsip maksimuma v teorii optimalnykh protsessov s zapazdyvaniem”, Dokl. AN SSSR., 136:1 (1961), 39–42 | Zbl
[13] Arguchintsev A. V., Poplevko V. P., “An optimal control problem by a hyperbolic system with boundary delay”, Izv. Irkutsk. gos. un-ta. Ser. mat., 35 (2021), 3–17 | MR | Zbl
[14] Arguchintsev A., Poplevko V., “An optimal control problem by a hybrid system of hyperbolic and ordinary differential equations”, Games., 12:1 (2021), 23 | DOI | MR | Zbl
[15] Biral F., Bertolazzi E., Bosetti P., “Notes on numerical methods for solving optimal control problems”, IEEE J. Ind. Appl., 5 (2016), 154–166 | DOI
[16] Demidenko N., Kulagina L., “Optimal control of thermal-engineering processes in tube furnaces”, Chem. Petrol. Eng., 42:3 (2006), 128–130 | DOI | MR
[17] Frankena J. F., “Optimal control problems with delay, the maximum principle and necessary conditions”, J. Eng. Math., 9:1 (1975), 53–64 | DOI | MR | Zbl
[18] Golfetto W., Fernandes S. Silva, “A review of gradient algorithms for numerical computation of optimal trajectories”, J. Aerosp. Technol. Manag., 4 (2012), 131–143 | DOI