On one integro-differential equation with fractional Hilfer operator and nonlinear maximums
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 211 (2022), pp. 83-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss the unique solvability of the initial-value problem for a nonlinear fractional integro-differential equation of the Hilfer type with a degenerate kernel and nonlinear maximums. USing a simple integral transformation based on the Dirichlet formula, we reduce the initial-value problem to a nonlinear, fractional integral equation of the Volterra type with nonlinear maximums. The theorem of existence and uniqueness of a solution of the initial-value problem considered is proved. The stability of solutions with respect to the parameter and the initial data is also proved. Illustrative examples are given.
Keywords: ordinary integro-differential equation, equation with nonlinear maximums, Hilfer operator, unique solvability, degenerate kernel.
@article{INTO_2022_211_a5,
     author = {T. K. Yuldashev and B. J. Kadirkulov},
     title = {On one integro-differential equation with fractional {Hilfer} operator and nonlinear maximums},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {83--95},
     publisher = {mathdoc},
     volume = {211},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_211_a5/}
}
TY  - JOUR
AU  - T. K. Yuldashev
AU  - B. J. Kadirkulov
TI  - On one integro-differential equation with fractional Hilfer operator and nonlinear maximums
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 83
EP  - 95
VL  - 211
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_211_a5/
LA  - ru
ID  - INTO_2022_211_a5
ER  - 
%0 Journal Article
%A T. K. Yuldashev
%A B. J. Kadirkulov
%T On one integro-differential equation with fractional Hilfer operator and nonlinear maximums
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 83-95
%V 211
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_211_a5/
%G ru
%F INTO_2022_211_a5
T. K. Yuldashev; B. J. Kadirkulov. On one integro-differential equation with fractional Hilfer operator and nonlinear maximums. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 211 (2022), pp. 83-95. http://geodesic.mathdoc.fr/item/INTO_2022_211_a5/

[1] Berdyshev A. S., Kadirkulov B. Zh., “Ob odnoi nelokalnoi zadache dlya parabolicheskogo uravneniya chetvertogo poryadka s drobnym operatorom Dzhrbashyana—Nersesyana”, Differ. uravn., 52:1 (2016), 123–128

[2] Gerasimov A. N., “Obobschenie zakonov lineinoi deformatsii i ikh prilozhenie k zadacham vnutrennego treniya”, Prikl. mat. mekh., 12:3 (1948), 251–260 | Zbl

[3] Kadirkulov B. Zh., Zhalilov M. A., “Ob odnoi nelokalnoi zadache dlya uravneniya smeshannogo tipa chetvertogo poryadka c operatorom Khilfera”, Byull. In-ta mat. im. V. I. Romanovskogo., 2020, no. 1, 59–67 | MR

[4] Yuldashev T. K., “Predelnaya zadacha dlya sistemy integro-differentsialnykh uravnenii s dvukhtochechnymi smeshannymi maksimumami”, Vestn. Samarsk. tekhn. un-ta. Ser. Fiz.-mat. nauki., 1:16 (2008), 15–22 | Zbl

[5] Yuldashev T. K., “Ob odnoi nelokalnoi kraevoi zadache dlya nelineinogo integro-differentsialnogo uravneniya Fredgolma s vyrozhdeniem yadra”, Differ. uravn., 54:12 (2018), 1687–1694 | MR | Zbl

[6] Yuldashev T. K., “O razreshimosti odnoi kraevoi zadachi dlya obyknovennogo integro-differentsialnogo uravneniya Fredgolma s vyrozhdennym yadrom”, Zh. vychisl. mat. mat. fiz., 59:2 (2019), 252–263 | Zbl

[7] Yuldashev T. K., Ovsyanikov S. M., “Priblizhennoe reshenie sistemy nelineinykh integralnykh uravnenii s zapazdyvayuschim argumentom i priblizhennoe vychislenie funktsionala kachestva”, Zh. Srednevolzhsk. mat. o-va., 17:2 (2015), 85–95 | Zbl

[8] Abdullaev O. Kh., “Solvability of a nonlocal problem with integral gluing condition for mixed type equation with Erdelyi–Kober operators”, Fract. Differ. Calculus., 7:2 (2017), 371–383 | DOI | MR | Zbl

[9] Abdullaev O. Kh., “Analog of the Gellerstedt problem for the mixed type equation with integral-differential operators of fractional order”, Uzbek Math. J., 2019, no. 3, 4–18 | DOI | MR | Zbl

[10] Hilfer R. {(ed.).}, Application of Fractional Calculus in Physics., World Scientific, Singapore, 2000 | MR

[11] Area I., Batarfi H., Losada J., Nieto J. J., Shammakh W., Torres A., “On a fractional order Ebola epidemic model”, Adv. Differ. Equations., 2015 (2015), 278 | DOI | MR | Zbl

[12] Caputo M., “Linear models of dissipation whose Q is almost frequency independent, II”, Fract. Calc. Appl. Anal., 11:1 (2008), 3–14 | MR | Zbl

[13] Tenreiro Machado J. A. {(ed.).}, Handbook of Fractional Calculus with Applications. Vols. 1–8, Walter de Gruyter, Berlin–Boston, 2019

[14] Hilfer R., “Experimental evidence for fractional time evolution in glass forming materials”, Chem. Phys., 284:1-2 (2002), 399–408 | DOI | MR

[15] Hilfer R., “On fractional relaxation”, Fractals., 11: 1 (2003), 251–257 | DOI | MR | Zbl

[16] Hilfer R., Luchko Y., Tomovski Z., “Operational method for the solution of fractional differential equations with generalized Riemann–Liouville fractional derivatives”, Fract. Calc. Appl. Anal., 12:3 (2009), 299–318 | MR | Zbl

[17] Hussain A., Baleanu D., Adeel M., “Existence of solution and stability for the fractional order novel coronavirus (nCoV-2019) model”, Adv. Differ. Equations., 2020 (2020), 384 | DOI | MR | Zbl

[18] Karimov E. T., “Frankl-type problem for a mixed type equation with the Caputo fractional derivative”, Lobachevskii J. Math., 41:9 (2020), 1829–1836 | DOI | MR | Zbl

[19] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, North-Holland, Amsterdam, 2006 | MR | Zbl

[20] Kim M.-Ha, Ri G., Chol O. H., “Operational method for solving multi-term fractional differential equations with the generalized fractional derivatives”, Fract. Calc. Appl. Anal., 17:1 (2014), 79–95 | DOI | MR | Zbl

[21] Kumar D., Baleanu D., “Editorial: fractional calculus and its applications in physics”, Front. Phys., 7:6 (2019)

[22] Mainardi F., “Fractional calculus: some basic problems in continuum and statistical mechanics”, Fractals and Fractional Calculus in Continuum Mechanics, eds. Carpinteri A., Mainardi F., Springer, Wien, 1997 | MR

[23] Malik S. A., Aziz S., “An inverse source problem for a two parameter anomalous diffusion equation with nonlocal boundary conditions”, Comput. Math. Appl., 73:12 (2017), 2548–2560 | DOI | MR | Zbl

[24] Novozhenova O. G., “Life and science of Alexey Gerasimov, one of the pioneers of fractional calculus in Soviet union”, Fract. Calc. Appl. Anal., 20:3 (2017), 790–809 | DOI | MR | Zbl

[25] Patnaik S., Hollkamp J. P., Semperlotti F., “Applications of variable-order fractional operators: a review”, Proc. Roy. Soc. A., 476 (2020), 20190498 | DOI | MR | Zbl

[26] Rossikhin Y. A., “Reflections on two parallel ways in the progress of fractional calculus in mechanics of solids”, Appl. Mech. Rev., 63:1 (2010), 010701 | DOI

[27] Samko S. G., Kilbas A. A., Marichev O. I., Fractional Integrals and Derivatives. Theory and Applications, Gordon Breach, Yverdon, 1993 | MR | Zbl

[28] Sandev T., Tomovski Z., Fractional Equations and Models: Theory and Applications, Springer Nature, Cham, Switzerland, 2019 | MR | Zbl

[29] Saxena R. K., Garra R., Orsingher E., “Analytical solution of space-time fractional telegraph-type equations involving Hilfer and Hadamard derivatives”, Integral Transforms Spec. Funct., 27:1 (2015), 30–42 | DOI | MR

[30] Sun H., Chang A., Zhang Y., Chen W., “A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications”, Fract. Calc. Appl. Anal., 22:1 (2019), 27–59 | DOI | MR | Zbl

[31] Ullah S., Khan M. A., Farooq M., Hammouch Z., Baleanu D., “A fractional model for the dynamics of tuberculosis infection using Caputo–Fabrizio derivative”, Discr. Cont. Dynam. Syst., Ser. S., 13:3 (2020), 975–993 | MR | Zbl

[32] Yuldashev T. K., Kadirkulov B. J., “Boundary-value problem for weak nonlinear partial differential equations of mixed type with fractional Hilfer operator”, Axioms., 9:2 (2020), 68 | DOI

[33] Yuldashev T. K., Kadirkulov B. J., “Nonlocal problem for a mixed-type fourth-order differential equation with Hilfer fractional operator”, Ural Math. J., 6:1 (2020), 153–167 | DOI | MR | Zbl

[34] Yuldashev T. K., Karimov E. T., “Inverse problem for a mixed type integro-differential equation with fractional order Caputo operators and spectral parameters”, Axioms., 9:4 (2020), 121 | DOI | MR