On one integro-differential equation with fractional Hilfer operator and nonlinear maximums
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 211 (2022), pp. 83-95

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss the unique solvability of the initial-value problem for a nonlinear fractional integro-differential equation of the Hilfer type with a degenerate kernel and nonlinear maximums. USing a simple integral transformation based on the Dirichlet formula, we reduce the initial-value problem to a nonlinear, fractional integral equation of the Volterra type with nonlinear maximums. The theorem of existence and uniqueness of a solution of the initial-value problem considered is proved. The stability of solutions with respect to the parameter and the initial data is also proved. Illustrative examples are given.
Keywords: ordinary integro-differential equation, equation with nonlinear maximums, Hilfer operator, unique solvability, degenerate kernel.
@article{INTO_2022_211_a5,
     author = {T. K. Yuldashev and B. J. Kadirkulov},
     title = {On one integro-differential equation with fractional {Hilfer} operator and nonlinear maximums},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {83--95},
     publisher = {mathdoc},
     volume = {211},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_211_a5/}
}
TY  - JOUR
AU  - T. K. Yuldashev
AU  - B. J. Kadirkulov
TI  - On one integro-differential equation with fractional Hilfer operator and nonlinear maximums
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 83
EP  - 95
VL  - 211
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_211_a5/
LA  - ru
ID  - INTO_2022_211_a5
ER  - 
%0 Journal Article
%A T. K. Yuldashev
%A B. J. Kadirkulov
%T On one integro-differential equation with fractional Hilfer operator and nonlinear maximums
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 83-95
%V 211
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_211_a5/
%G ru
%F INTO_2022_211_a5
T. K. Yuldashev; B. J. Kadirkulov. On one integro-differential equation with fractional Hilfer operator and nonlinear maximums. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 211 (2022), pp. 83-95. http://geodesic.mathdoc.fr/item/INTO_2022_211_a5/