On one integro-differential equation with fractional Hilfer operator and nonlinear maximums
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 211 (2022), pp. 83-95
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we discuss the unique solvability of the initial-value problem for a nonlinear fractional integro-differential equation of the Hilfer type with a degenerate kernel and nonlinear maximums. USing a simple integral transformation based on the Dirichlet formula, we reduce the initial-value problem to a nonlinear, fractional integral equation of the Volterra type with nonlinear maximums. The theorem of existence and uniqueness of a solution of the initial-value problem considered is proved. The stability of solutions with respect to the parameter and the initial data is also proved. Illustrative examples are given.
Keywords:
ordinary integro-differential equation, equation with nonlinear maximums, Hilfer operator, unique solvability, degenerate kernel.
@article{INTO_2022_211_a5,
author = {T. K. Yuldashev and B. J. Kadirkulov},
title = {On one integro-differential equation with fractional {Hilfer} operator and nonlinear maximums},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {83--95},
publisher = {mathdoc},
volume = {211},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2022_211_a5/}
}
TY - JOUR AU - T. K. Yuldashev AU - B. J. Kadirkulov TI - On one integro-differential equation with fractional Hilfer operator and nonlinear maximums JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 83 EP - 95 VL - 211 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_211_a5/ LA - ru ID - INTO_2022_211_a5 ER -
%0 Journal Article %A T. K. Yuldashev %A B. J. Kadirkulov %T On one integro-differential equation with fractional Hilfer operator and nonlinear maximums %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 83-95 %V 211 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_211_a5/ %G ru %F INTO_2022_211_a5
T. K. Yuldashev; B. J. Kadirkulov. On one integro-differential equation with fractional Hilfer operator and nonlinear maximums. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 211 (2022), pp. 83-95. http://geodesic.mathdoc.fr/item/INTO_2022_211_a5/