Structure of the diagnostic space in problems of differential diagnostics
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 211 (2022), pp. 75-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss the generalized concepts of a malfunction and a neighborhood of a reference malfunction. We introduce the concept of a generalized diagnostic space and examine its mathematical structure, which formalizes the continuity of processes in the diagnostic space. We show that in the diagnostic space, reference malfunctions and the corresponding differential equations are nondegenerate. The generalized problem of differential (topological) diagnostics is considered.
Keywords: classification of malfunctions, neighborhood of a of malfunction, diagnostic space, differential diagnosis problem.
@article{INTO_2022_211_a4,
     author = {M. V. Shamolin},
     title = {Structure of the diagnostic space in problems of differential diagnostics},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {75--82},
     publisher = {mathdoc},
     volume = {211},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_211_a4/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Structure of the diagnostic space in problems of differential diagnostics
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 75
EP  - 82
VL  - 211
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_211_a4/
LA  - ru
ID  - INTO_2022_211_a4
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Structure of the diagnostic space in problems of differential diagnostics
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 75-82
%V 211
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_211_a4/
%G ru
%F INTO_2022_211_a4
M. V. Shamolin. Structure of the diagnostic space in problems of differential diagnostics. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 211 (2022), pp. 75-82. http://geodesic.mathdoc.fr/item/INTO_2022_211_a4/

[1] Aleksandrov V. V., Zhermolenko V. N., “Absolyutnaya ustoichivost parametricheski vozmuschaemykh sistem tretego poryadka”, Avtomat. telemekh., 2009, no. 8 S. 19–39

[2] Borisenok I. T., Shamolin M. V., “Reshenie zadachi differentsialnoi diagnostiki”, Fundam. prikl. mat., 5:3 (1999), 775–790 | MR | Zbl

[3] Borisenok I. T., Shamolin M. V., “Reshenie zadachi differentsialnoi diagnostiki metodom statisticheskikh ispytanii”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 2001, no. 1, 29–31 | MR | Zbl

[4] Zhukov V. P., “O dostatochnykh i neobkhodimykh usloviyakh asimptoticheskoi ustoichivosti nelineinykh dinamicheskikh sistem”, Avtomat. telemekh., 1994, no. 3, 24–36 | Zbl

[5] Zhukov V. P., “O reduktsii zadachi issledovaniya nelineinykh dinamicheskikh sistem na ustoichivost vtorym metodom Lyapunova”, Avtomat. telemekh., 2005, no. 12, 51–64 | Zbl

[6] Zhukov V. P., “O dostatochnykh i neobkhodimykh usloviyakh grubosti nelineinykh dinamicheskikh sistem v smysle sokhraneniya kharaktera ustoichivosti”, Avtomat. telemekh., 2008, no. 1, 30–38 | Zbl

[7] Mironovskii L. A., “Funktsionalnoe diagnostirovanie dinamicheskikh sistem”, Avtomat. telemekh., 1980, no. 3, 96–121

[8] Okunev Yu. M., Parusnikov N. , Strukturnye i algoritmicheskie aspekty modelirovaniya dlya zadach upravleniya, Izd-vo MGU, M., 1983

[9] Parkhomenko P. P., Sagomonyan E. S., Osnovy tekhnicheskoi diagnostiki, Energiya, M., 1981

[10] Filippov A. F., “Differentsialnye uravneniya s razryvnoi pravoi chastyu”, Mat. sb., 51 (93):1 (1960), 99–128 | MR | Zbl

[11] Filippov A. F., “Klassifikatsiya kompaktnykh invariantnykh mnozhestv dinamicheskikh sistem”, Izv. RAN. Ser. mat., 57:6 (1993), 130–140 | Zbl

[12] Chikin M. G., “Sistemy s fazovymi ogranicheniyami”, Avtomat. telemekh., 1987, no. 10, 38–46 | MR | Zbl

[13] Shamolin M. V., Nekotorye zadachi differentsialnoi i topologicheskoi diagnostiki, Ekzamen, M., 2004

[14] Shamolin M. V., Nekotorye zadachi differentsialnoi i topologicheskoi diagnostiki. Izd. 2-e, pererab. i dopoln., Ekzamen, M., 2007

[15] Shamolin M. V., “Rasshirennaya zadacha differentsialnoi diagnostiki i ee vozmozhnoe reshenie”, Elektron. model., 31:1 (2009), 97–115

[16] Shamolin M. V., “Reshenie zadachi diagnostirovaniya v sluchae tochnykh traektornykh izmerenii s oshibkoi”, Elektron. model., 31:3 (2009), 73–90

[17] Shamolin M. V., “Diagnostika neispravnostei v odnoi sisteme nepryamogo upravleniya”, Elektron. model., 31:4 (2009), 55–66

[18] Shamolin M. V., “Diagnostika odnoi sistemy pryamogo upravleniya dvizheniem letatelnykh apparatov”, Elektron. model., 32:1 (2010), 45–52

[19] Shamolin M. V., “Diagnostika dvizheniya letatelnogo apparata v rezhime planiruyuschego spuska”, Elektron. model., 32:5 (2010), 31–44

[20] Shamolin M. V., “Diagnostika girostabilizirovannoi platformy, vklyuchennoi v sistemu upravleniya dvizheniem letatelnogo apparata”, Elektron. model., 33:3 (2011), 121–126

[21] Shamolin M. V., “Reshenie zadachi diagnostirovaniya v sluchayakh traektornykh izmerenii s oshibkoi i tochnykh traektornykh izmerenii”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 150 (2018), 88–109 | MR

[22] Shamolin M. V., Krugova E. P., “Zadacha diagnostiki modeli girostabilizirovannoi platformy”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 160 (2019), 137–141 | MR

[23] Altman E., Avrachenkov K., Menache I., Miller G., Prabhu B. J., Shwartz A., “Power control in wireless cellular networks”, IEEE Trans. Automat. Control., 54:10 (2009), 2328–2340 | DOI | MR | Zbl

[24] Anderson B. D. O., Jury E. I., Mansour M., “Schwarz matrix properties for continuous and discrete time systems”, Int. J. Contr., 3 (1976), 1–16 | DOI | MR

[25] Antoulas A. C., Sorensen D. C., Zhou Y., “On the decay rate of Hankel singular values and related issues”, Syst,. Control Lett., 46 (2002), 323–342 | DOI | MR | Zbl

[26] Beck A., Teboulle M., “Mirror descent and nonlinear projected subgradient methods for convex optimization”, Oper. Res. Lett., 31:3 (2003), 167–175 | DOI | MR | Zbl

[27] Ben-Tal A., Margalit T., Nemirovski A., “The ordered subsets mirror descent optimization method with applications to tomography”, SIAM J. Optim., 12:1 (2001), 79–108 | DOI | MR | Zbl

[28] Ceci C., Gerardi A., Tardelli P., “Existence of optimal controls for partially observed jump processes”, Acta Appl. Math., 74:2 (2002), 155–175 | DOI | MR | Zbl

[29] Choi D. H., Kim S. H., Sung D. K., “Energy-efficient maneuvering and communication of a single UAV-based relay”, IEEE Trans. Aerosp. Electron. Syst., 50:3 (2014), 2119–2326 | DOI

[30] Fleming W. H., “Optimal control of partially observable diffusions”, SIAM J. Control., 6:2 (1968), 194–214 | DOI | MR | Zbl

[31] Ho D.-T., Grotli E. I., Sujit P. B., Johansen T. A., Sousa J. B., “Optimization of wireless sensor network and UAV data acquisition”, J. Intel. Robot. Syst., 78:1 (2015), 159–179 | DOI

[32] Ober R. J., “Balanced parameterization of classes of linear systems *”, SIAM J. Control Optim., 29:6 (1991), 1251–1287 | DOI | MR | Zbl

[33] Rieder U., Winter J., “Optimal control of Markovian jump processes with partial information and applications to a parallel queueing model”, Math. Meth. Oper. Res., 70 (2009), 567–596 | DOI | MR | Zbl

[34] Shamolin M. V., “Foundations of differential and topological diagnostics”, J. Math. Sci., 114:1 (2003), 976–1024 | DOI | MR | Zbl

[35] Tang X., Wang S., “A low hardware overhead self-diagnosis technique using Reed–Solomon codes for self-repairing chips”, IEEE Trans. Comput., 59:10 (2010), 1309–1319 | DOI | MR | Zbl