Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_211_a0, author = {A. T. Assanova and E. A. Bakirova and A. E. Imanchiev}, title = {Boundary-value problem for an integro-differential equation of mixed type}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--13}, publisher = {mathdoc}, volume = {211}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_211_a0/} }
TY - JOUR AU - A. T. Assanova AU - E. A. Bakirova AU - A. E. Imanchiev TI - Boundary-value problem for an integro-differential equation of mixed type JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 3 EP - 13 VL - 211 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_211_a0/ LA - ru ID - INTO_2022_211_a0 ER -
%0 Journal Article %A A. T. Assanova %A E. A. Bakirova %A A. E. Imanchiev %T Boundary-value problem for an integro-differential equation of mixed type %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 3-13 %V 211 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_211_a0/ %G ru %F INTO_2022_211_a0
A. T. Assanova; E. A. Bakirova; A. E. Imanchiev. Boundary-value problem for an integro-differential equation of mixed type. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 211 (2022), pp. 3-13. http://geodesic.mathdoc.fr/item/INTO_2022_211_a0/
[1] Asanova A. T., Bakirova E. A., Kadirbaeva Zh. M., “Chislennoe reshenie zadachi upravleniya dlya integrodifferentsialnykh uravnenii”, Zh. vychisl. mat. mat. fiz., 60:2 (2020), 197–-215 | Zbl
[2] Asanova A. T., Imanchiev A. E., Kadirbaeva Zh. M., “O chislennom reshenii sistem obyknovennykh nagruzhennykh differentsialnykh uravnenii s mnogotochechnymi usloviyami”, Zh. vychisl. mat. mat. fiz., 58:4 (2018), 520–529 | Zbl
[3] Bakirova E. A., Iskakova N. B., Asanova A. T., “Chislennyi metod resheniya lineinoi kraevoi zadachi dlya integro-differentsialnykh uravnenii na osnove splain-approksimatsii”, Ukr. mat. zh., 71:9 (2019), 1176–1191
[4] Dzhumabaev D. S., “Priznaki odnoznachnoi razreshimosti lineinoi kraevoi zadachi dlya obyknovennogo differentsialnogo uravneniya”, Zh. vychisl. mat. mat. fiz., 29:1 (1989), 50–66 | MR | Zbl
[5] Dzhumabaev D. S., “Novye obschie resheniya obyknovennykh differentsialnykh uravnenii i metody resheniya kraevykh zadach”, Ukr. mat. zh., 71:7 (2019), 884–905 | MR | Zbl
[6] Yuldashev T. K., “Ob odnoi nelokalnoi kraevoi zadache dlya nelineinogo integro-differentsialnogo uravneniya Fredgolma s vyrozhdeniem yadra”, Differ. uravn., 54:12 (2018), 1687–1694 | MR | Zbl
[7] Yuldashev T. K., “O razreshimosti odnoi kraevoi zadachi dlya obyknovennogo integro-differentsialnogo uravneniya Fredgolma s vyrozhdennym yadrom”, Zh. vychisl. mat. mat. fiz., 59:2 (2019), 252–263 | Zbl
[8] Arqub O. A., Al-Smadi M., “Numerical algorithm for solving two-point, second-order periodic boundary-value problems for mixed integro-differential equations”, Appl. Math. Comp, 243:4 (2014), 911–922 | DOI | MR | Zbl
[9] Assanova A. T., Bakirova E. A., Kadirbayeva Zh. M., Uteshova R. E., “A computational method for solving a problem with parameter for linear systems of integro-differential equations”, Comp. Appl. Math., 39:3 (2020), 248 | DOI | MR | Zbl
[10] Assanova A. T., Kadirbayeva Zh. M., “On the numerical algorithms of parametrization method for solving a two-point boundary-value problem for impulsive systems of loaded differential equations”, Comp. Appl. Math., 37:4 (2018), 4966–4976 | DOI | MR | Zbl
[11] Balci M. A., Sezer M., “Hybrid Euler–Taylor matrix method for solving of generalized linear Fredholm integro-differential difference equations”, Appl. Math. Comp., 273:1 (2016), 33–41 | DOI | MR | Zbl
[12] Berenguer M. J., Gamez D., Lopez Linares A. J., “Solution of systems of integro-differential equations using numerical treatment of fixed point”, J. Comp. Appl. Math., 315:2 (2017), 343–353 | DOI | MR | Zbl
[13] Boichuk A. A., Samoilenko A. M., Generalized Inverse Operators and Fredholm Boundary-Value Problems, De Gruyter, Berlin, 2016 | MR | Zbl
[14] Brunner H., Collocation Methods for Volterra Integral and Related Functional Equations, Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl
[15] Dzhumabaev D. S., “Computational methods of solving the boundary-value problems for the loaded differential and Fredholm integro-differential equations”, Math. Meth. Appl. Sci., 41:7 (2018), 1439–1462 | DOI | MR | Zbl
[16] Dzhumabaev D. S., “New general solutions to linear Fredholm integro-differential equations and their applications on solving the boundary-value problems”, J. Comp. Appl. Math., 327:1 (2018), 79–108 | DOI | MR | Zbl
[17] Dzhumabaev D. S., Bakirova E. A., Mynbayeva S. T., “A method of solving a nonlinear boundary-value problem with a parameter for a loaded differential equation”, Math. Meth. Appl. Sci., 43:8 (2020), 1788–1802 | DOI | MR | Zbl
[18] Dzhumabaev D. S., Mynbayeva S. T., “New general solution to a nonlinear Fredholm integro-differential equation”, Eurasian Math. J., 10:4 (2019), 24–33 | DOI | MR | Zbl
[19] Hale J., Lune S. M. V., Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993 | MR | Zbl
[20] Hesameddini E., Shahbazi M., “Solving multipoint problems with linear Volterra–Fredholm integro-differential equations of the neutral type using Bernstein polynomials method”, Appl. Numer. Math., 136:1 (2019), 122–138 | DOI | MR | Zbl
[21] Kheybary S., Darvishi M. T., Wazwaz A. M., “A semi-analytical approach to solve integro-differential equations”, J. Comp. Appl. Math., 317:1 (2017), 17–30 | DOI | MR
[22] Lakshmikantham V., Rao M. R. M., Theory of Integro-Differential Equations, Gordon Breach, London, 1995 | MR | Zbl
[23] Parasidis I. N., “Extension and decomposition methods for differential and integro-differential equations”, Eurasian Math. J., 10:3 (2019), 48–67 | DOI | MR | Zbl
[24] Parasidis I. N., Providas E., Dafopoulos V., “Loaded differential and Fredholm integro-differential equations with nonlocal integral boundary conditions”, Prikl. mat. vopr. upravl., 2018, no. 3, 31–50
[25] Pruss J., Evolutionary Integral Equations and Applications, Birkhäuser, Basel, 1993 | MR | Zbl
[26] Reutskiy S. Yu., “The backward substitution method for multipoint problems with linear Volterra–Fredholm integro-differential equations of the neutral type”, J. Comp. Appl. Math., 296:3 (2016), 724–738 | DOI | MR | Zbl
[27] Wazwaz A. M., Linear and Nonlinear Integral Equations: Methods and Applications, Springer-Verlag, Berlin–Heidelberg, 2011 | MR | Zbl
[28] Yuldashev T. K., “On inverse boundary-value problem for a Fredholm integro-differential equation with degenerate kernel and spectral parameter”, Lobachevskii J. Math., 40:1 (2019), 230–-239 | DOI | MR | Zbl
[29] Yuldashev T. K., “Spectral features of the solving of a Fredholm homogeneous integro-differential equation with integral conditions and reflecting deviation”, Lobachevskii J. Math., 40:12 (2019), 2116–-2123 | DOI | MR | Zbl
[30] Yuzbasi S., “Numerical solutions of system of linear Fredholm–Volterra integro-differential equations by the Bessel collocation method and error estimation”, Appl. Math. Comp., 250:2 (2015), 320–338 | DOI | MR | Zbl