Boundary-value problem for an integro-differential equation of mixed type
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 211 (2022), pp. 3-13

Voir la notice de l'article provenant de la source Math-Net.Ru

For a two-point boundary-value problem for a system of integro-differential equations of mixed type, we obtain conditions for unique solvability in terms of the solvability of the Cauchy problem and a hybrid system.
Keywords: two-point boundary-value problem, integro-differential equation of mixed type, degenerate kernel, parametrization method, solvability.
@article{INTO_2022_211_a0,
     author = {A. T. Assanova and E. A. Bakirova and A. E. Imanchiev},
     title = {Boundary-value problem for an integro-differential equation of mixed type},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {211},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_211_a0/}
}
TY  - JOUR
AU  - A. T. Assanova
AU  - E. A. Bakirova
AU  - A. E. Imanchiev
TI  - Boundary-value problem for an integro-differential equation of mixed type
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 3
EP  - 13
VL  - 211
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_211_a0/
LA  - ru
ID  - INTO_2022_211_a0
ER  - 
%0 Journal Article
%A A. T. Assanova
%A E. A. Bakirova
%A A. E. Imanchiev
%T Boundary-value problem for an integro-differential equation of mixed type
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 3-13
%V 211
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_211_a0/
%G ru
%F INTO_2022_211_a0
A. T. Assanova; E. A. Bakirova; A. E. Imanchiev. Boundary-value problem for an integro-differential equation of mixed type. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 211 (2022), pp. 3-13. http://geodesic.mathdoc.fr/item/INTO_2022_211_a0/