Boundary-value problem for an integro-differential equation of mixed type
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 211 (2022), pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a two-point boundary-value problem for a system of integro-differential equations of mixed type, we obtain conditions for unique solvability in terms of the solvability of the Cauchy problem and a hybrid system.
Keywords: two-point boundary-value problem, integro-differential equation of mixed type, degenerate kernel, parametrization method, solvability.
@article{INTO_2022_211_a0,
     author = {A. T. Assanova and E. A. Bakirova and A. E. Imanchiev},
     title = {Boundary-value problem for an integro-differential equation of mixed type},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {211},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_211_a0/}
}
TY  - JOUR
AU  - A. T. Assanova
AU  - E. A. Bakirova
AU  - A. E. Imanchiev
TI  - Boundary-value problem for an integro-differential equation of mixed type
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 3
EP  - 13
VL  - 211
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_211_a0/
LA  - ru
ID  - INTO_2022_211_a0
ER  - 
%0 Journal Article
%A A. T. Assanova
%A E. A. Bakirova
%A A. E. Imanchiev
%T Boundary-value problem for an integro-differential equation of mixed type
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 3-13
%V 211
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_211_a0/
%G ru
%F INTO_2022_211_a0
A. T. Assanova; E. A. Bakirova; A. E. Imanchiev. Boundary-value problem for an integro-differential equation of mixed type. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 211 (2022), pp. 3-13. http://geodesic.mathdoc.fr/item/INTO_2022_211_a0/

[1] Asanova A. T., Bakirova E. A., Kadirbaeva Zh. M., “Chislennoe reshenie zadachi upravleniya dlya integrodifferentsialnykh uravnenii”, Zh. vychisl. mat. mat. fiz., 60:2 (2020), 197–-215 | Zbl

[2] Asanova A. T., Imanchiev A. E., Kadirbaeva Zh. M., “O chislennom reshenii sistem obyknovennykh nagruzhennykh differentsialnykh uravnenii s mnogotochechnymi usloviyami”, Zh. vychisl. mat. mat. fiz., 58:4 (2018), 520–529 | Zbl

[3] Bakirova E. A., Iskakova N. B., Asanova A. T., “Chislennyi metod resheniya lineinoi kraevoi zadachi dlya integro-differentsialnykh uravnenii na osnove splain-approksimatsii”, Ukr. mat. zh., 71:9 (2019), 1176–1191

[4] Dzhumabaev D. S., “Priznaki odnoznachnoi razreshimosti lineinoi kraevoi zadachi dlya obyknovennogo differentsialnogo uravneniya”, Zh. vychisl. mat. mat. fiz., 29:1 (1989), 50–66 | MR | Zbl

[5] Dzhumabaev D. S., “Novye obschie resheniya obyknovennykh differentsialnykh uravnenii i metody resheniya kraevykh zadach”, Ukr. mat. zh., 71:7 (2019), 884–905 | MR | Zbl

[6] Yuldashev T. K., “Ob odnoi nelokalnoi kraevoi zadache dlya nelineinogo integro-differentsialnogo uravneniya Fredgolma s vyrozhdeniem yadra”, Differ. uravn., 54:12 (2018), 1687–1694 | MR | Zbl

[7] Yuldashev T. K., “O razreshimosti odnoi kraevoi zadachi dlya obyknovennogo integro-differentsialnogo uravneniya Fredgolma s vyrozhdennym yadrom”, Zh. vychisl. mat. mat. fiz., 59:2 (2019), 252–263 | Zbl

[8] Arqub O. A., Al-Smadi M., “Numerical algorithm for solving two-point, second-order periodic boundary-value problems for mixed integro-differential equations”, Appl. Math. Comp, 243:4 (2014), 911–922 | DOI | MR | Zbl

[9] Assanova A. T., Bakirova E. A., Kadirbayeva Zh. M., Uteshova R. E., “A computational method for solving a problem with parameter for linear systems of integro-differential equations”, Comp. Appl. Math., 39:3 (2020), 248 | DOI | MR | Zbl

[10] Assanova A. T., Kadirbayeva Zh. M., “On the numerical algorithms of parametrization method for solving a two-point boundary-value problem for impulsive systems of loaded differential equations”, Comp. Appl. Math., 37:4 (2018), 4966–4976 | DOI | MR | Zbl

[11] Balci M. A., Sezer M., “Hybrid Euler–Taylor matrix method for solving of generalized linear Fredholm integro-differential difference equations”, Appl. Math. Comp., 273:1 (2016), 33–41 | DOI | MR | Zbl

[12] Berenguer M. J., Gamez D., Lopez Linares A. J., “Solution of systems of integro-differential equations using numerical treatment of fixed point”, J. Comp. Appl. Math., 315:2 (2017), 343–353 | DOI | MR | Zbl

[13] Boichuk A. A., Samoilenko A. M., Generalized Inverse Operators and Fredholm Boundary-Value Problems, De Gruyter, Berlin, 2016 | MR | Zbl

[14] Brunner H., Collocation Methods for Volterra Integral and Related Functional Equations, Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl

[15] Dzhumabaev D. S., “Computational methods of solving the boundary-value problems for the loaded differential and Fredholm integro-differential equations”, Math. Meth. Appl. Sci., 41:7 (2018), 1439–1462 | DOI | MR | Zbl

[16] Dzhumabaev D. S., “New general solutions to linear Fredholm integro-differential equations and their applications on solving the boundary-value problems”, J. Comp. Appl. Math., 327:1 (2018), 79–108 | DOI | MR | Zbl

[17] Dzhumabaev D. S., Bakirova E. A., Mynbayeva S. T., “A method of solving a nonlinear boundary-value problem with a parameter for a loaded differential equation”, Math. Meth. Appl. Sci., 43:8 (2020), 1788–1802 | DOI | MR | Zbl

[18] Dzhumabaev D. S., Mynbayeva S. T., “New general solution to a nonlinear Fredholm integro-differential equation”, Eurasian Math. J., 10:4 (2019), 24–33 | DOI | MR | Zbl

[19] Hale J., Lune S. M. V., Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993 | MR | Zbl

[20] Hesameddini E., Shahbazi M., “Solving multipoint problems with linear Volterra–Fredholm integro-differential equations of the neutral type using Bernstein polynomials method”, Appl. Numer. Math., 136:1 (2019), 122–138 | DOI | MR | Zbl

[21] Kheybary S., Darvishi M. T., Wazwaz A. M., “A semi-analytical approach to solve integro-differential equations”, J. Comp. Appl. Math., 317:1 (2017), 17–30 | DOI | MR

[22] Lakshmikantham V., Rao M. R. M., Theory of Integro-Differential Equations, Gordon Breach, London, 1995 | MR | Zbl

[23] Parasidis I. N., “Extension and decomposition methods for differential and integro-differential equations”, Eurasian Math. J., 10:3 (2019), 48–67 | DOI | MR | Zbl

[24] Parasidis I. N., Providas E., Dafopoulos V., “Loaded differential and Fredholm integro-differential equations with nonlocal integral boundary conditions”, Prikl. mat. vopr. upravl., 2018, no. 3, 31–50

[25] Pruss J., Evolutionary Integral Equations and Applications, Birkhäuser, Basel, 1993 | MR | Zbl

[26] Reutskiy S. Yu., “The backward substitution method for multipoint problems with linear Volterra–Fredholm integro-differential equations of the neutral type”, J. Comp. Appl. Math., 296:3 (2016), 724–738 | DOI | MR | Zbl

[27] Wazwaz A. M., Linear and Nonlinear Integral Equations: Methods and Applications, Springer-Verlag, Berlin–Heidelberg, 2011 | MR | Zbl

[28] Yuldashev T. K., “On inverse boundary-value problem for a Fredholm integro-differential equation with degenerate kernel and spectral parameter”, Lobachevskii J. Math., 40:1 (2019), 230–-239 | DOI | MR | Zbl

[29] Yuldashev T. K., “Spectral features of the solving of a Fredholm homogeneous integro-differential equation with integral conditions and reflecting deviation”, Lobachevskii J. Math., 40:12 (2019), 2116–-2123 | DOI | MR | Zbl

[30] Yuzbasi S., “Numerical solutions of system of linear Fredholm–Volterra integro-differential equations by the Bessel collocation method and error estimation”, Appl. Math. Comp., 250:2 (2015), 320–338 | DOI | MR | Zbl