Some tensor invariants of geodesic, potential, and dissipative systems on the tangent bundles of three-dimensional manifolds
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 210 (2022), pp. 96-105
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we present tensor invariants (differential forms) for homogeneous dynamical systems on the tangent bundles of smooth three-dimensional manifolds and demonstrate the connection between the presence of these invariants and the existence of a complete set of first integrals, which is necessary for integrating geodesic, potential, and dissipative systems.
Keywords:
dynamical system, integrability, dissipation, transcendental first integral, invariant differential form.
@article{INTO_2022_210_a9,
author = {M. V. Shamolin},
title = {Some tensor invariants of geodesic, potential, and dissipative systems on the tangent bundles of three-dimensional manifolds},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {96--105},
publisher = {mathdoc},
volume = {210},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2022_210_a9/}
}
TY - JOUR AU - M. V. Shamolin TI - Some tensor invariants of geodesic, potential, and dissipative systems on the tangent bundles of three-dimensional manifolds JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 96 EP - 105 VL - 210 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_210_a9/ LA - ru ID - INTO_2022_210_a9 ER -
%0 Journal Article %A M. V. Shamolin %T Some tensor invariants of geodesic, potential, and dissipative systems on the tangent bundles of three-dimensional manifolds %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 96-105 %V 210 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_210_a9/ %G ru %F INTO_2022_210_a9
M. V. Shamolin. Some tensor invariants of geodesic, potential, and dissipative systems on the tangent bundles of three-dimensional manifolds. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Mechanics, and Differential Equations, Tome 210 (2022), pp. 96-105. http://geodesic.mathdoc.fr/item/INTO_2022_210_a9/