Generalized control problem in diagnostic problems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 2, Tome 209 (2022), pp. 117-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we explain such concepts as control sphere, control ellipsoid, and control tube. The solution of the control problem by the method of statistical tests is proposed. The statement of the extended problem of control is formulated and necessary preparations for considering the diagnosis problem are made. This work is the third work of the cycle devoted to control problems.
Keywords: control sphere, control ellipsoid, control tube, extended control problem.
@article{INTO_2022_209_a9,
     author = {M. V. Shamolin},
     title = {Generalized control problem in diagnostic problems},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {117--126},
     publisher = {mathdoc},
     volume = {209},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_209_a9/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Generalized control problem in diagnostic problems
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 117
EP  - 126
VL  - 209
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_209_a9/
LA  - ru
ID  - INTO_2022_209_a9
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Generalized control problem in diagnostic problems
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 117-126
%V 209
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_209_a9/
%G ru
%F INTO_2022_209_a9
M. V. Shamolin. Generalized control problem in diagnostic problems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 2, Tome 209 (2022), pp. 117-126. http://geodesic.mathdoc.fr/item/INTO_2022_209_a9/

[1] Aleksandrov V. V., “Absolyutnaya ustoichivost imitatsionnykh dinamicheskikh sistem v pervom priblizhenii”, Dokl. AN SSSR., 299:2 (1988), 296–301

[2] Borisenok I. T., Shamolin M. V., “Reshenie zadachi differentsialnoi diagnostiki”, Fundam. prikl. mat., 5:3 (1999), 775–790 | MR | Zbl

[3] Borisenok I. T., Shamolin M. V., “Reshenie zadachi differentsialnoi diagnostiki metodom statisticheskikh ispytanii”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 2001, no. 1, 29–31 | MR | Zbl

[4] Zhukov V. P., “O reduktsii zadachi issledovaniya nelineinykh dinamicheskikh sistem na ustoichivost vtorym metodom Lyapunova”, Avtomat. telemekh., 2005, no. 12, 51–64 | Zbl

[5] Zhukov V. P., “O dostatochnykh i neobkhodimykh usloviyakh grubosti nelineinykh dinamicheskikh sistem v smysle sokhraneniya kharaktera ustoichivosti”, Avtomat. telemekh., 2008, no. 1, 30–38 | Zbl

[6] Mironovskii L. A., “Funktsionalnoe diagnostirovanie lineinykh dinamicheskikh sistem”, Avtomat. telemekh., 1979, no. 8, 120–128 | MR

[7] Mironovskii L. A., “Funktsionalnoe diagnostirovanie dinamicheskikh sistem”, Avtomat. telemekh., 1980, no. 3, 96–121

[8] Filippov A. F., “Differentsialnye uravneniya s razryvnoi pravoi chastyu”, Mat. sb., 51 (93):1 (1960), 99–128 | MR | Zbl

[9] Filippov A. F., “Klassifikatsiya kompaktnykh invariantnykh mnozhestv dinamicheskikh sistem”, Izv. RAN. Ser. mat., 57:6 (1993), 130–140 | Zbl

[10] Chikin M. G., “Sistemy s fazovymi ogranicheniyami”, Avtomat. telemekh., 1987, no. 10, 38–46 | MR | Zbl

[11] Chikin M. G., “K suschestvovaniyu pravoi proizvodnoi u reshenii uravnenii odnogo klassa razryvnykh sistem”, Avtomat. telemekh., 1988, no. 1, 170–171 | MR | Zbl

[12] Shamolin M. V., Nekotorye zadachi differentsialnoi i topologicheskoi diagnostiki, Ekzamen, M., 2004

[13] Shamolin M. V., Nekotorye zadachi differentsialnoi i topologicheskoi diagnostiki. Izd. 2-e, pererab. i dopoln., Ekzamen, M., 2007

[14] Shamolin M. V., “Rasshirennaya zadacha differentsialnoi diagnostiki i ee vozmozhnoe reshenie”, Elektron. model., 31:1 (2009), 97–115

[15] Shamolin M. V., “Reshenie zadachi diagnostirovaniya v sluchae tochnykh traektornykh izmerenii s oshibkoi”, Elektron. model., 31:3 (2009), 73–90

[16] Shamolin M. V., “Diagnostika neispravnostei v odnoi sisteme nepryamogo upravleniya”, Elektron. model., 31:4 (2009), 55–66

[17] Shamolin M. V., “Diagnostika odnoi sistemy pryamogo upravleniya dvizheniem letatelnykh apparatov”, Elektron. model., 32:1 (2010), 45–52

[18] Shamolin M. V., “Diagnostika dvizheniya letatelnogo apparata v rezhime planiruyuschego spuska”, Elektron. model., 32:5 (2010), 31–44

[19] Shamolin M. V., “Diagnostika girostabilizirovannoi platformy, vklyuchennoi v sistemu upravleniya dvizheniem letatelnogo apparata”, Elektron. model., 33:3 (2011), 121–126

[20] Shamolin M. V., “Reshenie zadachi diagnostirovaniya v sluchayakh traektornykh izmerenii s oshibkoi i tochnykh traektornykh izmerenii”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 150 (2018), 88–109 | MR

[21] Shamolin M. V., Krugova E. P., “Zadacha diagnostiki modeli girostabilizirovannoi platformy”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 160 (2019), 137–141 | MR

[22] Altman E., Avrachenkov K., Menache I., Miller G., Prabhu B. J., Shwartz A., “Power control in wireless cellular networks”, IEEE Trans. Automat. Control., 54:10 (2009), 2328–2340 | DOI | MR | Zbl

[23] Antoulas A. C., Sorensen D. C., Zhou Y., “On the decay rate of Hankel singular values and related issues”, Syst,. Control Lett., 46 (2002), 323–342 | DOI | MR | Zbl

[24] Beck A., Teboulle M., “Mirror descent and nonlinear projected subgradient methods for convex optimization”, Oper. Res. Lett., 31:3 (2003), 167–175 | DOI | MR | Zbl

[25] Ben-Tal A., Margalit T., Nemirovski A., “The ordered subsets mirror descent optimization method with applications to tomography”, SIAM J. Optim., 12:1 (2001), 79–108 | DOI | MR | Zbl

[26] Ceci C., Gerardi A., Tardelli P., “Existence of optimal controls for partially observed jump processes”, Acta Appl. Math., 74:2 (2002), 155–175 | DOI | MR | Zbl

[27] Choi D. H., Kim S. H., Sung D. K., “Energy-efficient maneuvering and communication of a single UAV-based relay”, IEEE Trans. Aerosp. Electron. Syst., 50:3 (2014), 2119–2326 | DOI

[28] Fleming W. H., “Optimal control of partially observable diffusions”, SIAM J. Control., 6:2 (1968), 194–214 | DOI | MR | Zbl

[29] Ho D.-T., Grotli E. I., Sujit P. B., Johansen T. A., Sousa J. B., “Optimization of wireless sensor network and UAV data acquisition”, J. Intel. Robot. Syst., 78:1 (2015), 159–179 | DOI

[30] Ober R. J., “Balanced parameterization of classes of linear systems *”, SIAM J. Control Optim., 29:6 (1991), 1251–1287 | DOI | MR | Zbl

[31] Rieder U., Winter J., “Optimal control of Markovian jump processes with partial information and applications to a parallel queueing model”, Math. Meth. Oper. Res., 70 (2009), 567–596 | DOI | MR | Zbl

[32] Shamolin M. V., “Foundations of differential and topological diagnostics”, J. Math. Sci., 114:1 (2003), 976–1024 | DOI | MR | Zbl

[33] Tang X., Wang S., “A low hardware overhead self-diagnosis technique using Reed–Solomon codes for self-repairing chips”, IEEE Trans. Comput., 59:10 (2010), 1309–1319 | DOI | MR | Zbl