The problem of finding the initial state of a resource network
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 2, Tome 209 (2022), pp. 42-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study distributions of resource flows in resource networks. The main problem is to develop methods for finding the initial state (distribution) of resources in a resource network if the state is known at some moment of discrete time. An essential feature is the significant nonlinearity of the resource redistribution process in such networks. We prove that the problem of finding the initial state is solvable and propose approaches for refining the solution and finding the initial state of the resource network in the cases of large and small resources.
Keywords: dynamic network, ergodic resource network, resource flow, flow distribution, threshold value, initial state of the resource network.
@article{INTO_2022_209_a4,
     author = {V. A. Skorokhodov and I. M. Erusalimskyi and S. Ch. Murtuzalieva},
     title = {The problem of finding the initial state of a resource network},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {42--52},
     publisher = {mathdoc},
     volume = {209},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_209_a4/}
}
TY  - JOUR
AU  - V. A. Skorokhodov
AU  - I. M. Erusalimskyi
AU  - S. Ch. Murtuzalieva
TI  - The problem of finding the initial state of a resource network
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 42
EP  - 52
VL  - 209
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_209_a4/
LA  - ru
ID  - INTO_2022_209_a4
ER  - 
%0 Journal Article
%A V. A. Skorokhodov
%A I. M. Erusalimskyi
%A S. Ch. Murtuzalieva
%T The problem of finding the initial state of a resource network
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 42-52
%V 209
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_209_a4/
%G ru
%F INTO_2022_209_a4
V. A. Skorokhodov; I. M. Erusalimskyi; S. Ch. Murtuzalieva. The problem of finding the initial state of a resource network. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 2, Tome 209 (2022), pp. 42-52. http://geodesic.mathdoc.fr/item/INTO_2022_209_a4/

[1] Berzh K., Teoriya grafov i ee primeneniya, IL, M., 1962

[2] Erusalimskii Ya. M., Skorokhodov V. A., Kuzminova M. V., Petrosyan A. G., Grafy s nestandartnoi dostizhimostyu: zadachi, prilozheniya, Yuzhnyi federalnyi un-t, Rostov-na-Donu, 2009

[3] Zhilyakova L. Yu., “Nesimmetrichnye resursnye seti. I. Protsessy stabilizatsii pri malykh resursakh”, Avtomat. telemekh., 2011, no. 4, 133–143 | MR | Zbl

[4] Zhilyakova L. Yu., “Ergodicheskie tsiklicheskie resursnye seti. I. Kolebaniya i ravnovesnye sostoyaniya pri malykh resursakh”, Upravl. bolshimi sist., 2013, no. 43, 34–54

[5] Zhilyakova L. Yu., “Ergodicheskie tsiklicheskie resursnye seti. II. Bolshie resursy”, Upravl. bolshimi sist., 2013, no. 45, 6–29

[6] Kuznetsov O. P., Zhilyakova L. Yu., “Dvustoronnie resursnye seti — novaya potokovaya model”, Dokl. RAN., 433:5 (2010), 609–612 | Zbl

[7] Kuzminova M. V., “Periodicheskie dinamicheskie grafy. Zadacha o maksimalnom potoke”, Izv. vuzov. Sev.-Kav. reg. Estestv. nauki., 2008, no. 5, 16–20

[8] Skorokhodov V. A., “Potoki v setyakh s menyayuscheisya dlitelnostyu prokhozhdeniya”, Izv. vuzov. Sev.-Kav. reg. Estestv. nauki., 2011, no. 1, 21–26

[9] Skorokhodov V. A., “Zadacha nakhozhdeniya porogovogo znacheniya v ergodicheskoi resursnoi seti”, Upravl. bolshimi sist., 2016, no. 63, 6–23

[10] Skorokhodov V. A., Abdulrakhman Kh., “Dinamicheskie resursnye seti. Sluchai malogo resursa”, Vestn. Voronezh. un-ta. Fiz. Mat., 2018, no. 4, 186–194

[11] Kuznetsov O. P., “Nonsymmetric resource networks. The study of limit states”, Manag. Product. Eng. Rev., 2:3 (2011), 33–39

[12] Aronson J. E., “A survey of dynamic network flows”, Ann. Oper. Res., 1989, no. 20, 1–66 | DOI | MR | Zbl

[13] Erzin A. I., Takhonov I. I. The problem of finding balanced flow, J. Appl. Industr. Math., 8:3 (23) (2005), 58–68 | MR | Zbl

[14] Fonoberova M., Lozovanu D., “The maximum flow in dynamic networks”, Comp. Sci. J. Moldova., 12:3 (36) (2004), 387–396 | MR | Zbl

[15] Fonoberova M., Lozovanu D., “The minimum cost multicommodity flow problem in dynamic networks and an algorithm for its solving”, Comp. Sci. J. Moldova., 13 *:1 (37) (2005), 29–36 | MR | Zbl

[16] Ford L. R., Fulkerson D. R., “Constructing maximal dynamic flows from static flows”, Oper. Res., 6 (1958), 419–433 | DOI | MR | Zbl

[17] Skorokhodov V. A., “Generalization of the reachability problem on directed graphs”, Math. Stat., 8:6, 699–704 | DOI

[18] Skorokhodov V. A., Chebotareva A. S., “The maximum flow problem in a network with special conditions of flow distribution”, J. Appl. Industr. Math., 9:3 (2015) | DOI | MR | Zbl