New bifurcation diagram in one model of vortex dynamics
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 2, Tome 209 (2022), pp. 33-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a completely Liouville-integrable Hamiltonian system with two degrees of freedom, which includes two limit cases. The first system describes the dynamics of two vortex filaments in a Bose–Einstein condensate enclosed in a harmonic trap. The second system governs the dynamics of point vortices in an ideal fluid in a circular domain. For the case of vortices with arbitrary intensities, we explicitly reduce the problem to a system with one degree of freedom. For intensities of different signs, we detect a new bifurcation diagram, which has not been previously encountered in works on this topic. Also, we obtain a separating curve, which is related to the change of the projections of Liouville tori without changing their number.
Keywords: vortex dynamics, completely integrable Hamiltonian system, bifurcation diagram, integral mapping, Bose–Einstein condensate.
Mots-clés : bifurcations of Liouville tori
@article{INTO_2022_209_a3,
     author = {G. P. Palshin},
     title = {New bifurcation diagram in one model of vortex dynamics},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {33--41},
     publisher = {mathdoc},
     volume = {209},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_209_a3/}
}
TY  - JOUR
AU  - G. P. Palshin
TI  - New bifurcation diagram in one model of vortex dynamics
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 33
EP  - 41
VL  - 209
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_209_a3/
LA  - ru
ID  - INTO_2022_209_a3
ER  - 
%0 Journal Article
%A G. P. Palshin
%T New bifurcation diagram in one model of vortex dynamics
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 33-41
%V 209
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_209_a3/
%G ru
%F INTO_2022_209_a3
G. P. Palshin. New bifurcation diagram in one model of vortex dynamics. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 2, Tome 209 (2022), pp. 33-41. http://geodesic.mathdoc.fr/item/INTO_2022_209_a3/

[1] Borisov A. V., Mamaev I. S., Matematicheskie metody dinamiki vikhrevykh struktur, M.-Izhevsk, 2005

[2] Goryachev D. N., “O nekotorykh sluchayakh dvizheniya pryamolineinykh vikhrei”, Uch. zap. Mosk. un-ta, otd. fiz.-mat., 1899, no. 16, 1–106

[3] Ryabov P. E., “Bifurkatsii torov Liuvillya v sisteme dvukh vikhrei v Boze–-Einshteinovskom kondensate, imeyuschikh polozhitelnye intensivnosti”, Dokl. RAN., 485:6 (2019), 670–675 | Zbl

[4] Sokolov S. V., Ryabov P. E., “Bifurkatsionnaya diagramma sistemy dvukh vikhrei v boze-einshteinovskom kondensate, imeyuschikh intensivnosti odinakovykh znakov”, Dokl. RAN., 480:6 (2018), 652–656 | Zbl

[5] Aref H., “Gröbli's solution of the three-vortex problem”, Ann. Rev. Fluid Mech., 24 (1992), 1–20 | DOI | MR | Zbl

[6] Borisov A. V., Lebedev V. G., “Dynamics of three vortices on a plane and a sphere. II. General compact case”, Regul. Chaot. Dynam., 3:2 (1998), 99–114 | DOI | MR | Zbl

[7] Borisov A. V., Pavlov A. E., “Dynamics and statics of vortices on a plane and a sphere. I”, Regul. Chaot. Dynam., 3:1 (1998), 28–38 | DOI | MR | Zbl

[8] Greenhill A. G., “Plane vortex motion”, Quart. J. Pure Appl. Math., 15:58 (1877/78), 10–27

[9] Gröbli W., “Speziele Probleme über die Bewegung geradliniger paralleler Wirbelfäden”, Vierteljahrsch. d. Naturforsch. Geselsch., 22 (1877), 37–81

[10] Helmholtz H., “Über Integrale hydrodinamischen Gleichungen weiche den Wirbelbewegungen entsprechen”, J. Reine Angew. Math., 55 (1858), 25–55 | MR | Zbl

[11] Kirchhoff G. R., Vorlesungen über mathematische Physik. Bd. 1. Mechanik, Teubner, Leipzig, 1874

[12] Koukouloyannis V., Voyatzis G., Kevrekidis P. G., “Dynamics of three noncorotating vortices in Bose–Einstein condensates”, Phys. Rev. E., 89:4 (2014), 042905 | DOI

[13] Newton P. K., Kidambi R., “Motion of three point vortices on a sphere”, Phys. D., 116:1-2 (1998), 143–175 | DOI | MR | Zbl

[14] Ryabov P. E., “Bifurcation of four Liouville tori in one generalized integrable model of vortex dynamics”, Dokl. Phys., 64:8 (2019), 325–329 | DOI | MR

[15] Ryabov P. E., Shadrin A. A., “Bifurcation diagram of one generalized integrable model of vortex dynamics”, Regul. Chaot. Dynam., 24:4 (2019), 418–431 | DOI | MR | Zbl

[16] Ryabov P. E., Sokolov S. V., “Phase topology of two vortices of identical intensities in a Bose–Einstein condensate”, Rus. J. Nonlin. Dynam., 15:1 (2019), 59–66 | MR | Zbl

[17] Sokolov S. V., Ryabov P. E., “Bifurcation analysis of the dynamics of two vortices in a Bose–Einstein condensate. The case of intensities of opposite signs”, Regul. Chaot. Dynam., 22:8 (2017), 979–998 | MR

[18] Torres P. J., Kevrekidis P. G., Frantzeskakis D. J., Carretero-Gonzalez R., Schmelcher P., Hall D. S., “Dynamics of vortex dipoles in confined Bose–Einstein condensates”, Phys. Lett. A., 375 (2011), 3044–3050 | DOI