New bifurcation diagram in one model of vortex dynamics
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 2, Tome 209 (2022), pp. 33-41

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a completely Liouville-integrable Hamiltonian system with two degrees of freedom, which includes two limit cases. The first system describes the dynamics of two vortex filaments in a Bose–Einstein condensate enclosed in a harmonic trap. The second system governs the dynamics of point vortices in an ideal fluid in a circular domain. For the case of vortices with arbitrary intensities, we explicitly reduce the problem to a system with one degree of freedom. For intensities of different signs, we detect a new bifurcation diagram, which has not been previously encountered in works on this topic. Also, we obtain a separating curve, which is related to the change of the projections of Liouville tori without changing their number.
Keywords: vortex dynamics, completely integrable Hamiltonian system, bifurcation diagram, integral mapping, Bose–Einstein condensate.
Mots-clés : bifurcations of Liouville tori
@article{INTO_2022_209_a3,
     author = {G. P. Palshin},
     title = {New bifurcation diagram in one model of vortex dynamics},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {33--41},
     publisher = {mathdoc},
     volume = {209},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_209_a3/}
}
TY  - JOUR
AU  - G. P. Palshin
TI  - New bifurcation diagram in one model of vortex dynamics
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 33
EP  - 41
VL  - 209
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_209_a3/
LA  - ru
ID  - INTO_2022_209_a3
ER  - 
%0 Journal Article
%A G. P. Palshin
%T New bifurcation diagram in one model of vortex dynamics
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 33-41
%V 209
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_209_a3/
%G ru
%F INTO_2022_209_a3
G. P. Palshin. New bifurcation diagram in one model of vortex dynamics. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 2, Tome 209 (2022), pp. 33-41. http://geodesic.mathdoc.fr/item/INTO_2022_209_a3/