Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_209_a3, author = {G. P. Palshin}, title = {New bifurcation diagram in one model of vortex dynamics}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {33--41}, publisher = {mathdoc}, volume = {209}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_209_a3/} }
TY - JOUR AU - G. P. Palshin TI - New bifurcation diagram in one model of vortex dynamics JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 33 EP - 41 VL - 209 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_209_a3/ LA - ru ID - INTO_2022_209_a3 ER -
G. P. Palshin. New bifurcation diagram in one model of vortex dynamics. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 2, Tome 209 (2022), pp. 33-41. http://geodesic.mathdoc.fr/item/INTO_2022_209_a3/
[1] Borisov A. V., Mamaev I. S., Matematicheskie metody dinamiki vikhrevykh struktur, M.-Izhevsk, 2005
[2] Goryachev D. N., “O nekotorykh sluchayakh dvizheniya pryamolineinykh vikhrei”, Uch. zap. Mosk. un-ta, otd. fiz.-mat., 1899, no. 16, 1–106
[3] Ryabov P. E., “Bifurkatsii torov Liuvillya v sisteme dvukh vikhrei v Boze–-Einshteinovskom kondensate, imeyuschikh polozhitelnye intensivnosti”, Dokl. RAN., 485:6 (2019), 670–675 | Zbl
[4] Sokolov S. V., Ryabov P. E., “Bifurkatsionnaya diagramma sistemy dvukh vikhrei v boze-einshteinovskom kondensate, imeyuschikh intensivnosti odinakovykh znakov”, Dokl. RAN., 480:6 (2018), 652–656 | Zbl
[5] Aref H., “Gröbli's solution of the three-vortex problem”, Ann. Rev. Fluid Mech., 24 (1992), 1–20 | DOI | MR | Zbl
[6] Borisov A. V., Lebedev V. G., “Dynamics of three vortices on a plane and a sphere. II. General compact case”, Regul. Chaot. Dynam., 3:2 (1998), 99–114 | DOI | MR | Zbl
[7] Borisov A. V., Pavlov A. E., “Dynamics and statics of vortices on a plane and a sphere. I”, Regul. Chaot. Dynam., 3:1 (1998), 28–38 | DOI | MR | Zbl
[8] Greenhill A. G., “Plane vortex motion”, Quart. J. Pure Appl. Math., 15:58 (1877/78), 10–27
[9] Gröbli W., “Speziele Probleme über die Bewegung geradliniger paralleler Wirbelfäden”, Vierteljahrsch. d. Naturforsch. Geselsch., 22 (1877), 37–81
[10] Helmholtz H., “Über Integrale hydrodinamischen Gleichungen weiche den Wirbelbewegungen entsprechen”, J. Reine Angew. Math., 55 (1858), 25–55 | MR | Zbl
[11] Kirchhoff G. R., Vorlesungen über mathematische Physik. Bd. 1. Mechanik, Teubner, Leipzig, 1874
[12] Koukouloyannis V., Voyatzis G., Kevrekidis P. G., “Dynamics of three noncorotating vortices in Bose–Einstein condensates”, Phys. Rev. E., 89:4 (2014), 042905 | DOI
[13] Newton P. K., Kidambi R., “Motion of three point vortices on a sphere”, Phys. D., 116:1-2 (1998), 143–175 | DOI | MR | Zbl
[14] Ryabov P. E., “Bifurcation of four Liouville tori in one generalized integrable model of vortex dynamics”, Dokl. Phys., 64:8 (2019), 325–329 | DOI | MR
[15] Ryabov P. E., Shadrin A. A., “Bifurcation diagram of one generalized integrable model of vortex dynamics”, Regul. Chaot. Dynam., 24:4 (2019), 418–431 | DOI | MR | Zbl
[16] Ryabov P. E., Sokolov S. V., “Phase topology of two vortices of identical intensities in a Bose–Einstein condensate”, Rus. J. Nonlin. Dynam., 15:1 (2019), 59–66 | MR | Zbl
[17] Sokolov S. V., Ryabov P. E., “Bifurcation analysis of the dynamics of two vortices in a Bose–Einstein condensate. The case of intensities of opposite signs”, Regul. Chaot. Dynam., 22:8 (2017), 979–998 | MR
[18] Torres P. J., Kevrekidis P. G., Frantzeskakis D. J., Carretero-Gonzalez R., Schmelcher P., Hall D. S., “Dynamics of vortex dipoles in confined Bose–Einstein condensates”, Phys. Lett. A., 375 (2011), 3044–3050 | DOI