Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_209_a0, author = {Yu. P. Virchenko and A. E. Novoseltseva}, title = {Hyperbolicity of covariant systems of first-order equations for vector and scalar fields}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--15}, publisher = {mathdoc}, volume = {209}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_209_a0/} }
TY - JOUR AU - Yu. P. Virchenko AU - A. E. Novoseltseva TI - Hyperbolicity of covariant systems of first-order equations for vector and scalar fields JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 3 EP - 15 VL - 209 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_209_a0/ LA - ru ID - INTO_2022_209_a0 ER -
%0 Journal Article %A Yu. P. Virchenko %A A. E. Novoseltseva %T Hyperbolicity of covariant systems of first-order equations for vector and scalar fields %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 3-15 %V 209 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_209_a0/ %G ru %F INTO_2022_209_a0
Yu. P. Virchenko; A. E. Novoseltseva. Hyperbolicity of covariant systems of first-order equations for vector and scalar fields. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 2, Tome 209 (2022), pp. 3-15. http://geodesic.mathdoc.fr/item/INTO_2022_209_a0/
[1] Virchenko Yu. P., Subbotin A. V., “Opisanie klassa evolyutsionnykh uravnenii ferrodinamiki”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obz., 170 (2019), 15–30
[2] Virchenko Yu. P., Subbotin A. V., “Matematicheskie zadachi konstruirovaniya evolyutsionnykh uravnenii dinamiki kondensirovannykh sred”, Mat. Mezhdunar. nauch. konf. «Differentsialnye uravneniya i smezhnye problemy» (Sterlitamak, 25–29 iyunya 2018 g.), Ufa, 2018, 262–264
[3] Virchenko Yu. P., Subbotin A. V., “Uravneniya dinamiki kondensirovannykh sred s lokalnym zakonom sokhraneniya”, Mat. V Mezhdunar. nauch. konf. «Nelokalnye kraevye zadachi i rodstvennye problemy matematicheskoi biologii, informatiki i fiziki» (Nalchik, 4–7 dekabrya 2018 g.), IPMA KBNTs RAN, Nalchik, 2018, 59
[4] Virchenko Yu. P., Subbotin A. V., “Opisanie klassa evolyutsionnykh uravnenii divergentnogo tipa dlya vektornogo polya”, Mat. IV Vseross. nauch.-prakt. konf. «Sovremennye problemy fiziko-matematicheskikh nauk» (Orel, 22–25 noyabrya 2018 g.), Orel, 2018, 83–86
[5] Virchenko Yu. P., Subbotin A. V., “Kovariantnye differentsialnye operatory pervogo poryadka”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obz., 187 (2020), 19–30
[6] Virchenko Yu. P., Novoseltseva A. E., “Giperbolicheskie uravneniya pervogo poryadka v $\mathbb{R}^3$”, Mat. Mezhdunar. konf. «Sovremennye metody teorii funktsii i smezhnye problemy. Voronezhskaya zimnyaya matematicheskaya shkola» (Voronezh, 28 yanvarya – 2 fevralya 2021 g.), Voronezh, 2021, 81
[7] Godunov S. K., Uravneniya matematicheskoi fiziki, Nauka, M., 1979 | MR
[8] Gurevich G. B., Osnovy teorii algebraicheskikh invariantov, GITTL, M.-L., 1948 | MR
[9] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978 | MR
[10] Spencer A. G. M., “Theory of invariants”, Continuum Physics, I. Part III, ed. Eringen A. C., Academic Press, New York, 1971, 239–353 | MR
[11] Virchenko Yu. P., Subbotin A. V., “The class of evolutionary ferrodynamic equations”, Math. Meth. Appl. Sci., 44 (2021), 11913–11922 | DOI | MR | Zbl