Hyperbolicity of covariant systems of first-order equations for vector and scalar fields
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 2, Tome 209 (2022), pp. 3-15

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a class of first-order systems of quasilinear partial differential equations $\dot{\boldsymbol{u}}=\mathsf{L}'[\boldsymbol{u},\boldsymbol{\rho}]$, $\dot{\boldsymbol{\rho}}=\mathsf {L}''[\boldsymbol{u},\boldsymbol{\rho}]$ that describe time evolution of the pair $\langle\boldsymbol{u},\boldsymbol{\rho}\rangle$ consisting of a vector field $\boldsymbol{u}(\boldsymbol{x},t)$ and the set of scalar fields $\boldsymbol{\rho}=\langle\rho^{(s)}(\boldsymbol{x},t);\ s=1,\dots,N\rangle$, $\boldsymbol{x}\in\mathbb{R}^3$. The class considered consists of systems that are invariant under time and space translations and covariant under space rotations. We describe the corresponding class of evolution generators, i.e., nonlinear first-order differential operators $\mathsf{L}=\langle\mathsf{L}'[\cdot],\mathsf{L}''[\cdot]\rangle$ acting in the functional space $C_{1,\mathrm{loc}}^{3+N}(\mathbb{R}^3)$. Also, we find conditions under which a pair of operators $\mathsf{L}$ generates a hyperbolic system.
Keywords: first-order differential operator, quasilinear system, hyperbolicity, vector field, covariance, spherical symmetry.
@article{INTO_2022_209_a0,
     author = {Yu. P. Virchenko and A. E. Novoseltseva},
     title = {Hyperbolicity of covariant systems of first-order equations for vector and scalar fields},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {209},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_209_a0/}
}
TY  - JOUR
AU  - Yu. P. Virchenko
AU  - A. E. Novoseltseva
TI  - Hyperbolicity of covariant systems of first-order equations for vector and scalar fields
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 3
EP  - 15
VL  - 209
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_209_a0/
LA  - ru
ID  - INTO_2022_209_a0
ER  - 
%0 Journal Article
%A Yu. P. Virchenko
%A A. E. Novoseltseva
%T Hyperbolicity of covariant systems of first-order equations for vector and scalar fields
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 3-15
%V 209
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_209_a0/
%G ru
%F INTO_2022_209_a0
Yu. P. Virchenko; A. E. Novoseltseva. Hyperbolicity of covariant systems of first-order equations for vector and scalar fields. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 2, Tome 209 (2022), pp. 3-15. http://geodesic.mathdoc.fr/item/INTO_2022_209_a0/