Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_208_a6, author = {M. A. Kuznetsova}, title = {Inverse problem for the {Sturm--Liouville} operator with a frozen argument on the time scale}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {49--62}, publisher = {mathdoc}, volume = {208}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_208_a6/} }
TY - JOUR AU - M. A. Kuznetsova TI - Inverse problem for the Sturm--Liouville operator with a frozen argument on the time scale JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 49 EP - 62 VL - 208 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_208_a6/ LA - ru ID - INTO_2022_208_a6 ER -
%0 Journal Article %A M. A. Kuznetsova %T Inverse problem for the Sturm--Liouville operator with a frozen argument on the time scale %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 49-62 %V 208 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_208_a6/ %G ru %F INTO_2022_208_a6
M. A. Kuznetsova. Inverse problem for the Sturm--Liouville operator with a frozen argument on the time scale. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 1, Tome 208 (2022), pp. 49-62. http://geodesic.mathdoc.fr/item/INTO_2022_208_a6/
[1] Kuznetsova M. A., “O vosstanovlenii differentsialnykh operatorov Shturma—Liuvillya na vremennykh shkalakh”, Mat. zametki., 109:1 (2021), 82–100 | MR | Zbl
[2] Levitan B. M., Obratnye zadachi Shturma—Liuvillya, Nauka, M., 1984 | MR
[3] Marchenko V. A., Operatory Shturma—Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR
[4] Myshkis A. D., Lineinye differentsialnye uravneniya s zapazdyvayuschim argumentom, Nauka, M., 1972 | MR
[5] Nakhushev A. M., Nagruzhennye uravneniya i ikh primenenie, Nauka, M., 2012
[6] Adalar İ., Ozkan A. S., “An interior inverse Sturm–Liouville problem on a time scale”, Anal. Math. Phys., 10 (2020), 58 | DOI | MR | Zbl
[7] Albeverio S., Hryniv R. O., Nizhnik L. P., “Inverse spectral problems for nonlocal Sturm–Liouville operators”, Inverse Probl., 23:2 (2007), 523–535 | DOI | MR | Zbl
[8] Ambarzumyan V. A., “Über eine Frage der Eigenwerttheorie”, Z. Phys., 1929, 690–695 | DOI
[9] Bohner M., Peterson A., Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003 | MR | Zbl
[10] Bohner M., Peterson A., Dynamic Equations on Time Scales, Birkhäuser, Boston, 2001 | MR | Zbl
[11] Bondarenko N. P., Buterin S. A., Vasiliev S. V., “An inverse spectral problem for Sturm–Liouville operators with frozen argument”, J. Math. Anal. Appl., 472:1 (2019), 1028–1041 | DOI | MR | Zbl
[12] Buterin S. A., “On an inverse spectral problem for a convolution integro-differential operator”, Res. Math., 50:3 (2007), 173–181 | DOI | MR
[13] Buterin S., Kuznetsova M., “On the inverse problem for Sturm–Liouville-type operators with frozen argument: rational case”, Comp. Appl. Math., 39:1 (2020), 1–15 | DOI | MR | Zbl
[14] Buterin S. A., Vasiliev S. V., “On recovering a Sturm–Liouville-type operator with the frozen argument rationally proportioned to the interval length”, J. Inverse and Ill-Posed Probl., 27:3 (2019), 429–438 | DOI | MR | Zbl
[15] Freiling G., Yurko V. A., Inverse Sturm–Liouville Problems and Their Applications, NOVA Science, New York, 2001 | MR | Zbl
[16] Hale J., Theory of Functional-Differential Equations, Springer-Verlag, New York, 1977 | MR | Zbl
[17] Hilger S., “Analysis on measure chains—a unified approach to continuous and discrete calculus”, Res. Math., 18:1 (1990), 18–56 | DOI | MR | Zbl
[18] Hu Y.-T., Bondarenko N. P., Yang C.-F., “Traces and inverse nodal problem for Sturm–Liouville operators with frozen argument”, Appl. Math. Lett., 102 (2020), 106096 | DOI | MR | Zbl
[19] Kuznetsova M. A., “A uniqueness theorem on inverse spectral problems for the Sturm–Liouville differential operators on time scales”, Res. Math, 75 (2020), 44 | DOI | MR | Zbl
[20] Kuznetsova M. A., Buterin S. A., Yurko V. A., “On inverse spectral problems for Sturm–Liouville differential operators on closed sets”, Lobachevskii J. Math., 42:6 (2021), 1201–1209 | DOI | MR | Zbl
[21] Nizhnik L. P., “Inverse nonlocal Sturm–Liouville problem”, Inverse Probl., 26:12 (2010), 125006 | DOI | MR | Zbl
[22] Niven I., Irrational Numbers, Mathematical Association of America, New Jersey, 1956 | MR | Zbl
[23] Ozkan S., “Ambarzumyan-type theorems on a time scale”, J. Inverse Ill-Posed Probl., 26:5 (2018), 633–637 | DOI | MR | Zbl
[24] Ozkan A. S., Adalar İ., “Half-inverse Sturm–Liouville problem on a time scale”, Inverse Probl., 36:2 (2020), 025015 | DOI | MR | Zbl
[25] Wang Yu P., Zhang M., Zhao W., Wei X., “Reconstruction for Sturm–Liouville operators with frozen argument for irrational cases”, Appl. Math. Lett., 111 (2021), 106590 | DOI | MR | Zbl
[26] Yurko V., “Inverse problems for Sturm–Liouville differential operators on closed sets”, Tamkang J. Math., 50:3 (2019), 199–206 | DOI | MR | Zbl