Inverse problem for the Sturm--Liouville operator with a frozen argument on the time scale
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 1, Tome 208 (2022), pp. 49-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the problem of constructing the potential of the Sturm–Liouville equation with a frozen argument on the time scale by the spectrum of the Dirichlet boundary-value problem, where the time scale consists of two segments and the argument is frozen at the end of the first segment. We obtain the uniqueness theorem and construct an algorithm for solving the inverse problem together with necessary and sufficient conditions for its solvability. The case considered substantially differs from the case of the classical Sturm– Liouville operator with a frozen argument.
Keywords: inverse spectral problem, frozen argument, Sturm—Liouville operator, closed set.
Mots-clés : time scale
@article{INTO_2022_208_a6,
     author = {M. A. Kuznetsova},
     title = {Inverse problem for the {Sturm--Liouville} operator with a frozen argument on the time scale},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {49--62},
     publisher = {mathdoc},
     volume = {208},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_208_a6/}
}
TY  - JOUR
AU  - M. A. Kuznetsova
TI  - Inverse problem for the Sturm--Liouville operator with a frozen argument on the time scale
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 49
EP  - 62
VL  - 208
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_208_a6/
LA  - ru
ID  - INTO_2022_208_a6
ER  - 
%0 Journal Article
%A M. A. Kuznetsova
%T Inverse problem for the Sturm--Liouville operator with a frozen argument on the time scale
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 49-62
%V 208
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_208_a6/
%G ru
%F INTO_2022_208_a6
M. A. Kuznetsova. Inverse problem for the Sturm--Liouville operator with a frozen argument on the time scale. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 1, Tome 208 (2022), pp. 49-62. http://geodesic.mathdoc.fr/item/INTO_2022_208_a6/

[1] Kuznetsova M. A., “O vosstanovlenii differentsialnykh operatorov Shturma—Liuvillya na vremennykh shkalakh”, Mat. zametki., 109:1 (2021), 82–100 | MR | Zbl

[2] Levitan B. M., Obratnye zadachi Shturma—Liuvillya, Nauka, M., 1984 | MR

[3] Marchenko V. A., Operatory Shturma—Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR

[4] Myshkis A. D., Lineinye differentsialnye uravneniya s zapazdyvayuschim argumentom, Nauka, M., 1972 | MR

[5] Nakhushev A. M., Nagruzhennye uravneniya i ikh primenenie, Nauka, M., 2012

[6] Adalar İ., Ozkan A. S., “An interior inverse Sturm–Liouville problem on a time scale”, Anal. Math. Phys., 10 (2020), 58 | DOI | MR | Zbl

[7] Albeverio S., Hryniv R. O., Nizhnik L. P., “Inverse spectral problems for nonlocal Sturm–Liouville operators”, Inverse Probl., 23:2 (2007), 523–535 | DOI | MR | Zbl

[8] Ambarzumyan V. A., “Über eine Frage der Eigenwerttheorie”, Z. Phys., 1929, 690–695 | DOI

[9] Bohner M., Peterson A., Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003 | MR | Zbl

[10] Bohner M., Peterson A., Dynamic Equations on Time Scales, Birkhäuser, Boston, 2001 | MR | Zbl

[11] Bondarenko N. P., Buterin S. A., Vasiliev S. V., “An inverse spectral problem for Sturm–Liouville operators with frozen argument”, J. Math. Anal. Appl., 472:1 (2019), 1028–1041 | DOI | MR | Zbl

[12] Buterin S. A., “On an inverse spectral problem for a convolution integro-differential operator”, Res. Math., 50:3 (2007), 173–181 | DOI | MR

[13] Buterin S., Kuznetsova M., “On the inverse problem for Sturm–Liouville-type operators with frozen argument: rational case”, Comp. Appl. Math., 39:1 (2020), 1–15 | DOI | MR | Zbl

[14] Buterin S. A., Vasiliev S. V., “On recovering a Sturm–Liouville-type operator with the frozen argument rationally proportioned to the interval length”, J. Inverse and Ill-Posed Probl., 27:3 (2019), 429–438 | DOI | MR | Zbl

[15] Freiling G., Yurko V. A., Inverse Sturm–Liouville Problems and Their Applications, NOVA Science, New York, 2001 | MR | Zbl

[16] Hale J., Theory of Functional-Differential Equations, Springer-Verlag, New York, 1977 | MR | Zbl

[17] Hilger S., “Analysis on measure chains—a unified approach to continuous and discrete calculus”, Res. Math., 18:1 (1990), 18–56 | DOI | MR | Zbl

[18] Hu Y.-T., Bondarenko N. P., Yang C.-F., “Traces and inverse nodal problem for Sturm–Liouville operators with frozen argument”, Appl. Math. Lett., 102 (2020), 106096 | DOI | MR | Zbl

[19] Kuznetsova M. A., “A uniqueness theorem on inverse spectral problems for the Sturm–Liouville differential operators on time scales”, Res. Math, 75 (2020), 44 | DOI | MR | Zbl

[20] Kuznetsova M. A., Buterin S. A., Yurko V. A., “On inverse spectral problems for Sturm–Liouville differential operators on closed sets”, Lobachevskii J. Math., 42:6 (2021), 1201–1209 | DOI | MR | Zbl

[21] Nizhnik L. P., “Inverse nonlocal Sturm–Liouville problem”, Inverse Probl., 26:12 (2010), 125006 | DOI | MR | Zbl

[22] Niven I., Irrational Numbers, Mathematical Association of America, New Jersey, 1956 | MR | Zbl

[23] Ozkan S., “Ambarzumyan-type theorems on a time scale”, J. Inverse Ill-Posed Probl., 26:5 (2018), 633–637 | DOI | MR | Zbl

[24] Ozkan A. S., Adalar İ., “Half-inverse Sturm–Liouville problem on a time scale”, Inverse Probl., 36:2 (2020), 025015 | DOI | MR | Zbl

[25] Wang Yu P., Zhang M., Zhao W., Wei X., “Reconstruction for Sturm–Liouville operators with frozen argument for irrational cases”, Appl. Math. Lett., 111 (2021), 106590 | DOI | MR | Zbl

[26] Yurko V., “Inverse problems for Sturm–Liouville differential operators on closed sets”, Tamkang J. Math., 50:3 (2019), 199–206 | DOI | MR | Zbl