Qualitative properties of solutions to fourth-order differential equations on graphs
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 1, Tome 208 (2022), pp. 37-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine properties of solutions to fourth-order differential equations on geometric graphs (positivity, oscillatory behavior, distribution of zeros, etc.). We prove theorems on alternation of zeros of solutions and develop the theory of nonoscillation. The definition of nonoscillation for fourth-order equations on graphs is based on the concept of a double constancy zone introduced in the paper. The new approach allows one to generalize the basic principles of the theory of nonoscillation of second-order equations on a graph to fourth-order equations.
Mots-clés : oscillation
Keywords: graph equation, fourth-order equation.
@article{INTO_2022_208_a5,
     author = {R. Ch. Kulaev and A. A. Urtaeva},
     title = {Qualitative properties of solutions to fourth-order differential equations on graphs},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {37--48},
     publisher = {mathdoc},
     volume = {208},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_208_a5/}
}
TY  - JOUR
AU  - R. Ch. Kulaev
AU  - A. A. Urtaeva
TI  - Qualitative properties of solutions to fourth-order differential equations on graphs
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 37
EP  - 48
VL  - 208
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_208_a5/
LA  - ru
ID  - INTO_2022_208_a5
ER  - 
%0 Journal Article
%A R. Ch. Kulaev
%A A. A. Urtaeva
%T Qualitative properties of solutions to fourth-order differential equations on graphs
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 37-48
%V 208
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_208_a5/
%G ru
%F INTO_2022_208_a5
R. Ch. Kulaev; A. A. Urtaeva. Qualitative properties of solutions to fourth-order differential equations on graphs. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 1, Tome 208 (2022), pp. 37-48. http://geodesic.mathdoc.fr/item/INTO_2022_208_a5/

[1] Borovskikh A. V., Mustafokulov R., Lazarev K. P., Pokornyi Yu. V., “Ob odnom klasse differentsialnykh uravnenii chetvertogo poryadka na prostranstvennoi seti”, Dokl. RAN., 345:6 (1995), 730–732 | MR | Zbl

[2] Derr V. Ya., “Neostsillyatsiya reshenii lineinykh differentsialnykh uravnenii”, Vestn. Udmurt. un-ta. Mat. Mekh. Komp. nauki., 2009, no. 1, 46–89

[3] Kulaev R. Ch., “Neobkhodimoe i dostatochnoe usloviya polozhitelnosti funktsii Grina dlya uravneniya chetvertogo poryadka na grafe”, Differ. uravn., 51:3 (2015), 302–316 | MR | Zbl

[4] Kulaev R. Ch., “O funktsii Grina kraevoi zadachi na grafe-puchke”, Izv. vuzov. Mat., 2013, no. 2, 56–66 | MR | Zbl

[5] Kulaev R. Ch., “Neostsillyatsiya uravneniya chetvertogo poryadka na grafe”, Mat. sb., 206:12 (2015), 79–118 | MR | Zbl

[6] Kulaev R. Ch., “O svoistve neostsillyatsii uravneniya na grafe”, Sib. mat. zh., 57:1 (2016), 85–97 | MR | Zbl

[7] Kulaev R. Ch., “Printsip sravneniya dlya funktsii Grina kraevoi zadachi chetvertogo poryadka na grafe”, Ufim. mat. zh., 7:4 (2015), 99–108 | MR | Zbl

[8] Levin A. Yu., “Neostsillyatsiya reshenii uravneniya $x^{(n)}+p_1(t)x^{(n-1)}+\cdot+p_n(t)x=0$”, Usp. mat. nauk. *, 24:2 (146) (1969), 43–96 | MR

[9] Pokornyi Yu. V., Bakhtina Zh. I., Zvereva M. B., Shabrov S. A., Ostsillyatsionnyi metod Shturma v spektralnykh zadachakh, Fizmatlit, M., 2009

[10] Pokornyi Yu. V., Mustafokulov R., “O pozitivnoi obratimosti nekotorykh kraevykh zadach dlya uravneniya chetvertogo poryadka”, Differ. uravn., 33:10 (1997), 1358–1365 | MR | Zbl

[11] Pokornyi Yu. V., Mustafokulov R., “O polozhitelnosti funktsii Grina lineinykh kraevykh zadach dlya uravnenii chetvertogo poryadka na grafe”, Izv. vuzov. Mat., 1999, no. 2, 75–82 | Zbl

[12] Pokornyi Yu. V., Penkin O. M., Pryadiev V. L., Borovskikh A. V., Lazarev K. P., Shabrov S. A., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2007

[13] M. Bohner, O. Došlý, “Disconjugacy and transformation for symplectic systems”, Rocky Mount. J. Math., 27:3 (1997), 707–743 | DOI | MR | Zbl

[14] Borovskikh A. V., Lazarev K. P., “Fourth-order differential equations on geometric graphs”, J. Math. Sci., 119:6 (2004), 719–738 | DOI | MR | Zbl

[15] Cabada A., Saavedra L.,, “Disconjugacy characterization by means of spectral $(k,n-k)$ problems”, Appl. Math. Lett., 52 (2016), 21–29 | DOI | MR | Zbl

[16] Elias U., Oscillation Theory of Two-Term Differential Equations, Springer-Verlag, 1997 | MR

[17] Leighton W., Nehari Z., “On the oscillation of solutions of self-adjoint linear differential equations of the fourth order”, Trans. Am. Math. Soc., 89 (1958), 325–377 | DOI | MR

[18] Mercier D., Régnier V., “Control of a network of Euler–Bernoulli beams”, J. Math. Anal. Appl., 342:2 (2008), 874–894 | DOI | MR | Zbl

[19] Swanson C. A., Comparison Theorems and Oscillation Theory of Linear Differential Equations, Academic Press, New York–London, 1968 | MR