Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_208_a2, author = {G. V. Garkavenko and N. B. Uskova}, title = {On spectral properties of one difference operator with involution}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {15--23}, publisher = {mathdoc}, volume = {208}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_208_a2/} }
TY - JOUR AU - G. V. Garkavenko AU - N. B. Uskova TI - On spectral properties of one difference operator with involution JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 15 EP - 23 VL - 208 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_208_a2/ LA - ru ID - INTO_2022_208_a2 ER -
%0 Journal Article %A G. V. Garkavenko %A N. B. Uskova %T On spectral properties of one difference operator with involution %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 15-23 %V 208 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_208_a2/ %G ru %F INTO_2022_208_a2
G. V. Garkavenko; N. B. Uskova. On spectral properties of one difference operator with involution. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 1, Tome 208 (2022), pp. 15-23. http://geodesic.mathdoc.fr/item/INTO_2022_208_a2/
[1] Baskakov A. G., “Metody abstraktnogo garmonicheskogo analiza v teorii vozmuschenii lineinykh operatorov”, Sib. mat. zh., 24:1 (1983), 21–39 | MR
[2] Baskakov A. G., Krishtal I. A., Uskova N. B., “Metod podobnykh operatorov v spektralnom analize operatornykh beskonechnykh matrits”, Prikl. mat. fiz., 52:2 (2020), 71–85 | MR
[3] Baskakov A. G., Krishtal I. A., Uskova N. B., “Metod podobnykh operatorov v spektralnom analize operatornykh beskonechnykh matrits. Primery. I”, Prikl. mat. fiz., 52:3 (2020), 185–194 | MR
[4] Baskakov A. G., Polyakov D. M., “Metod podobnykh operatorov v spektralnom analize operatora Khilla s negladkim potentsialom”, Mat. sb., 208:1 (2017), 3–47 | MR | Zbl
[5] Baskakov A. G., Uskova N. B., “Obobschennyi metod Fure dlya sistemy differentsialnykh uravnenii pervogo poryadka s involyutsiei i gruppy operatorov”, Differ. uravn., 54:2 (2018), 276–280 | Zbl
[6] Baskakov A. G., Uskova N. B., “Spektralnyi analiz differentsialnykh operatorov s involyutsiei i gruppy operatorov”, Differ. uravn., 54:9 (2018), 1281–1291
[7] Broitigam I. N., Polyakov D. M., “Asimptotika sobstvennykh znachenii beskonechnykh blochnykh matrits”, Ufim. mat. zh., 11:3 (2019), 10–29 | Zbl
[8] Burlutskaya M. Sh., “Smeshannaya zadacha dlya sistemy differentsialnykh uravnenii pervogo poryadka s nepreryvnym potentsialom”, Izv. Saratov. un-ta. Nov. ser. Mat. Mekh. Inform., 16:2 (2016), 145–151 | MR | Zbl
[9] Burlutskaya M. Sh., “Klassicheskoe i obobschennoe reshenie smeshannoi zadachi dlya sistemy uravnenii pervogo poryadka s nepreryvnym potentsialom”, Zh. vychisl. mat. mat. fiz., 59:3 (2019), 380–390 | MR | Zbl
[10] Burlutskaya M. Sh., Khromov A. P., “Funktsionalno-differentsialnye operatory s involyutsiei i operatory Diraka s periodicheskimi kraevymi usloviyami”, Dokl. RAN., 454:1 (2014), 15–17 | MR | Zbl
[11] Vladykina V. E., Shkalikov A. A., “Spektralnye svoistva obyknovennykh differentsialnykh operatorov s involyutsiei”, Dokl. RAN., 484:1 (2019), 12–17 | MR | Zbl
[12] Garkavenko G. V., “O diagonalizatsii nekotorykh klassov lineinykh operatorov”, Izv. vuzov. Mat., 1994, no. 11, 14–19 | MR | Zbl
[13] Garkavenko G. V., Uskova N. B., “Spektralnyi analiz raznostnykh operatorov vtorogo poryadka s rastuschim potentsialom”, Tavrich. vestn. inform. mat., 28:3 (2015), 40–48
[14] Garkavenko G. V., Uskova N. B., “Metod podobnykh operatorov v issledovanii spektralnykh svoistv odnogo klassa raznostnykh operatorov”, Vestn. Voronezh. un-ta. Ser. Fiz. Mat., 2016, no. 3, 101–111 | Zbl
[15] Garkavenko G. V., Uskova N. B., “Spektralnyi analiz odnogo klassa raznostnykh operatorov s rastuschim potentsialom”, Izv. Saratov. un-ta. Nov. ser. Mat. Mekh. Inform., 16:4 (2016), 395–402 | MR | Zbl
[16] Garkavenko G. V., Uskova N. B., “Asimptotika sobstvennykh znachenii raznostnogo operatora s rastuschim potentsialom i polugruppy operatorov”, Mat. fiz. komp. model., 20:4 (2017), 6–17 | MR
[17] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965
[18] Danford N., Shvarts Dzh. T., Lineinye operatory. Spektralnye operatory. T. 3, Mir, M., 1974
[19] Krishtal I. A., Uskova N. B., “Spektralnye svoistva differentsialnykh operatorov pervogo poryadka s involyutsiei i gruppy operatorov”, Sib. elektron. mat. izv., 16 (2019), 1091–1132 | Zbl
[20] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR
[21] Skrynnikov A. V., “O kvazinilpotentnom variante metoda Fridrikhsa v teorii podobiya lineinykh operatorov”, Funkts. anal. prilozh., 17:3 (1983), 89–90 | MR | Zbl
[22] Baskakov A. G., Krishtal I. A., Romanova E. Yu., “Spectral analysis of a differential operator with an involution”, J. Evol. Equations., 17 (2017), 669–684 | DOI | MR | Zbl
[23] Baskakov A. G., Krishtal I. A., Uskova N. B., “Similarity techniques in the spectral analysis of perturbed operator matrices”, J. Math. Anal. Appl., 477:2 (2019), 930–960 | DOI | MR | Zbl
[24] Baskakov A. G., Krishtal I. A., Uskova N. B., “On the spectral analysis of a differential operator with an involution and general boundary conditions”, Eurasian Math. J., 11:2 (2020), 30–39 | DOI | MR | Zbl
[25] Boutet de Monvel A., Zielinski L., “Approximation of eigenvalues for unbounded Jacobi matrices using finite submatrices”, Centr. Eur. J. Math., 12:3 (2014), 445–463 | MR | Zbl
[26] Hinkkannen A., “On the diagonalization of a certain class of operators”, Michigan Math. J., 32:3 (1985), 349–359 | DOI | MR
[27] Ikebe Y., Asai N., Miyazaki Y., Cai D., “The eigenvalue problem for infinite complex symmetric tridiagonal matrices with application”, Lin. Alg. Appl., 241–243 (1996), 599–618 | DOI | MR | Zbl
[28] Janas J., Malejki M., “Alternative approaches to asymptotic behavior of eigenvalues of some unbounded Jacobi matrices”, J. Comput. Appl. Math., 200 (2007), 342–356 | DOI | MR | Zbl
[29] Janas J., Naboko S., “Infinite Jacobi matrices with unbounded entries: Asymptotics of eigenvalues and the transformation operator approach”, SIAM J. Math. Anal., 36:2 (2004), 643–658 | DOI | MR | Zbl
[30] Kopzhassarova A. A., Lukashov A. L., Sarsenbi A. M., “Spectral properties of non-self-adjoint perturbations for a spectral problem with involution”, Abstr. Appl. Anal., 2012 (2012), 590781 | MR | Zbl
[31] Malejki M., “Asymptotics of large eigenvalues for some discrete unbounded Jacobi matrices”, Lin. Alg. Appl., 431 (2009), 1952–1970 | DOI | MR | Zbl
[32] Malejki M., “Asymptotic behaviour and approximation of eigenvalues for unbounded block Jacobi matrices”, Opuscula Math., 30:3 (2010), 311–330 | DOI | MR | Zbl
[33] Malejki M., “Eigenvalues for some complex infinite tridiagonal matrices”, J. Adv. Math. Comp. Sci., 26:5 (2018), 1–9 | DOI