On spectral properties of one difference operator with involution
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 1, Tome 208 (2022), pp. 15-23

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a difference operator with involution acting in the complex Hilbert space $l_2(\mathbb{Z})$. Using the method of similar operators, we reduce it to the diagonal (block diagonal) form, which allows one to obtain various spectral characteristics of the original operator and to construct biinvariant subspaces for it.
Keywords: method of similar operators, difference operator, spectrum, spectral projector.
@article{INTO_2022_208_a2,
     author = {G. V. Garkavenko and N. B. Uskova},
     title = {On spectral properties of one difference operator with involution},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {15--23},
     publisher = {mathdoc},
     volume = {208},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_208_a2/}
}
TY  - JOUR
AU  - G. V. Garkavenko
AU  - N. B. Uskova
TI  - On spectral properties of one difference operator with involution
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 15
EP  - 23
VL  - 208
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_208_a2/
LA  - ru
ID  - INTO_2022_208_a2
ER  - 
%0 Journal Article
%A G. V. Garkavenko
%A N. B. Uskova
%T On spectral properties of one difference operator with involution
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 15-23
%V 208
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_208_a2/
%G ru
%F INTO_2022_208_a2
G. V. Garkavenko; N. B. Uskova. On spectral properties of one difference operator with involution. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 1, Tome 208 (2022), pp. 15-23. http://geodesic.mathdoc.fr/item/INTO_2022_208_a2/