One of the statistical solutions of the problem of differential diagnostics
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 1, Tome 208 (2022), pp. 122-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we show that in the case of trajectory measurements with noise, which is a normal white-noise random process with zero mean value and a limited spectrum, diagnostics is feasible using the diagnostic algorithms developed in the author's previous works. The diagnostic functional was obtained, which was introduced a priori in the previous works of the author.
Keywords: diagnostic problem, diagnostic algorithms, statistical solution.
@article{INTO_2022_208_a10,
     author = {M. V. Shamolin},
     title = {One of the statistical solutions of the problem of differential diagnostics},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {122--127},
     publisher = {mathdoc},
     volume = {208},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_208_a10/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - One of the statistical solutions of the problem of differential diagnostics
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 122
EP  - 127
VL  - 208
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_208_a10/
LA  - ru
ID  - INTO_2022_208_a10
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T One of the statistical solutions of the problem of differential diagnostics
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 122-127
%V 208
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_208_a10/
%G ru
%F INTO_2022_208_a10
M. V. Shamolin. One of the statistical solutions of the problem of differential diagnostics. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 1, Tome 208 (2022), pp. 122-127. http://geodesic.mathdoc.fr/item/INTO_2022_208_a10/

[1] Borisenok I. T., Shamolin M. V., “Reshenie zadachi differentsialnoi diagnostiki”, Fundam. prikl. mat., 5:3 (1999), 775–790 | MR | Zbl

[2] Borisenok I. T., Shamolin M. V., “Reshenie zadachi differentsialnoi diagnostiki metodom statisticheskikh ispytanii”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 2001, no. 1, 29–31 | MR | Zbl

[3] Zhukov V. P., “O dostatochnykh i neobkhodimykh usloviyakh asimptoticheskoi ustoichivosti nelineinykh dinamicheskikh sistem”, Avtomat. telemekh., 1994, no. 3, 24–36 | Zbl

[4] Zhukov V. P., “O reduktsii zadachi issledovaniya nelineinykh dinamicheskikh sistem na ustoichivost vtorym metodom Lyapunova”, Avtomat. telemekh., 2005, no. 12, 51–64 | Zbl

[5] Zhukov V. P., “O dostatochnykh i neobkhodimykh usloviyakh grubosti nelineinykh dinamicheskikh sistem v smysle sokhraneniya kharaktera ustoichivosti”, Avtomat. telemekh., 2008, no. 1, 30–38 | Zbl

[6] Mironovskii L. A., “Funktsionalnoe diagnostirovanie dinamicheskikh sistem”, Avtomat. telemekh., 1980, no. 3, 96–121

[7] Okunev Yu. M., Parusnikov N. , Strukturnye i algoritmicheskie aspekty modelirovaniya dlya zadach upravleniya, Izd-vo MGU, M., 1983

[8] Parkhomenko P. P., Sagomonyan E. S., Osnovy tekhnicheskoi diagnostiki, Energiya, M., 1981

[9] Chikin M. G., “Sistemy s fazovymi ogranicheniyami”, Avtomat. telemekh., 1987, no. 10, 38–46 | MR | Zbl

[10] Shamolin M. V., Nekotorye zadachi differentsialnoi i topologicheskoi diagnostiki, Ekzamen, M., 2004

[11] Shamolin M. V., Nekotorye zadachi differentsialnoi i topologicheskoi diagnostiki. Izd. 2-e, pererab. i dopoln., Ekzamen, M., 2007

[12] Shamolin M. V., “Rasshirennaya zadacha differentsialnoi diagnostiki i ee vozmozhnoe reshenie”, Elektron. model., 31:1 (2009), 97–115

[13] Shamolin M. V., “Reshenie zadachi diagnostirovaniya v sluchae tochnykh traektornykh izmerenii s oshibkoi”, Elektron. model., 31:3 (2009), 73–90

[14] Shamolin M. V., “Diagnostika neispravnostei v odnoi sisteme nepryamogo upravleniya”, Elektron. model., 31:4 (2009), 55–66

[15] Shamolin M. V., “Diagnostika odnoi sistemy pryamogo upravleniya dvizheniem letatelnykh apparatov”, Elektron. model., 32:1 (2010), 45–52

[16] Shamolin M. V., “Diagnostika dvizheniya letatelnogo apparata v rezhime planiruyuschego spuska”, Elektron. model., 32:5 (2010), 31–44

[17] Shamolin M. V., “Diagnostika girostabilizirovannoi platformy, vklyuchennoi v sistemu upravleniya dvizheniem letatelnogo apparata”, Elektron. model., 33:3 (2011), 121–126

[18] Shamolin M. V., “Reshenie zadachi diagnostirovaniya v sluchayakh traektornykh izmerenii s oshibkoi i tochnykh traektornykh izmerenii”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 150 (2018), 88–109 | MR

[19] Shamolin M. V., Krugova E. P., “Zadacha diagnostiki modeli girostabilizirovannoi platformy”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 160 (2019), 137–141 | MR

[20] Altman E., Avrachenkov K., Menache I., Miller G., Prabhu B. J., Shwartz A., “Power control in wireless cellular networks”, IEEE Trans. Automat. Control., 54:10 (2009), 2328–2340 | DOI | MR | Zbl

[21] Antoulas A. C., Sorensen D. C., Zhou Y., “On the decay rate of Hankel singular values and related issues”, Syst,. Control Lett., 46 (2002), 323–342 | DOI | MR | Zbl

[22] Beck A., Teboulle M., “Mirror descent and nonlinear projected subgradient methods for convex optimization”, Oper. Res. Lett., 31:3 (2003), 167–175 | DOI | MR | Zbl

[23] Ben-Tal A., Margalit T., Nemirovski A., “The ordered subsets mirror descent optimization method with applications to tomography”, SIAM J. Optim., 12:1 (2001), 79–108 | DOI | MR | Zbl

[24] Ceci C., Gerardi A., Tardelli P., “Existence of optimal controls for partially observed jump processes”, Acta Appl. Math., 74:2 (2002), 155–175 | DOI | MR | Zbl

[25] Chiang M., Tan C. W., Hande P., Lan T., “Power control in wireless cellular networks”, Found. Trends Networking., 2:4 (2008), 381–533 | DOI

[26] Choi D. H., Kim S. H., Sung D. K., “Energy-efficient maneuvering and communication of a single UAV-based relay”, IEEE Trans. Aerosp. Electron. Syst., 50:3 (2014), 2119–2326 | DOI

[27] Fleming W. H., “Optimal control of partially observable diffusions”, SIAM J. Control., 6:2 (1968), 194–214 | DOI | MR | Zbl

[28] Ho D.-T., Grotli E. I., Sujit P. B., Johansen T. A., Sousa J. B., “Optimization of wireless sensor network and UAV data acquisition”, J. Intel. Robot. Syst., 78:1 (2015), 159–179 | DOI

[29] Ober R. J., “Balanced parameterization of classes of linear systems *”, SIAM J. Control Optim., 29:6 (1991), 1251–1287 | DOI | MR | Zbl

[30] Ober R. J., McFarlane D., “Balanced canonical forms for minimal systems: A normalized coprime factor approach”, Linear Algebra Appl., 122-124 (1989), 23–64 | DOI | MR | Zbl

[31] Rieder U., Winter J., “Optimal control of Markovian jump processes with partial information and applications to a parallel queueing model”, Math. Meth. Oper. Res., 70 (2009), 567–596 | DOI | MR | Zbl

[32] Shamolin M. V., “Foundations of differential and topological diagnostics”, J. Math. Sci., 114:1 (2003), 976–1024 | DOI | MR | Zbl

[33] Su W., Boyd S., Candes E., “A differential equation for modeling Nesterov's accelerated gradient method: Theory and insights”, J. Machine Learning Res., 2016, no. 17 (153), 1–43 | MR | Zbl

[34] Wilson D. A., “The Hankel operator and its induced norms”, Int. J. Contr., 42 (1985), 65–70 | DOI | MR | Zbl