Two combinatorial identities related to enumeration of graphs
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 1, Tome 208 (2022), pp. 11-14

Voir la notice de l'article provenant de la source Math-Net.Ru

From the explicit formula for the number of labeled, series-parallel, $2$-connected graphs with a given number of vertices obtained by the author, two combinatorial identities are derived. Also, proofs of these identities independent of the enumeration of graphs are given.
Keywords: combinatorial identity, method of coefficients, enumeration, series-parallel graph, 2-connected graph.
@article{INTO_2022_208_a1,
     author = {V. A. Voblyi},
     title = {Two combinatorial identities related to enumeration of graphs},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {11--14},
     publisher = {mathdoc},
     volume = {208},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_208_a1/}
}
TY  - JOUR
AU  - V. A. Voblyi
TI  - Two combinatorial identities related to enumeration of graphs
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 11
EP  - 14
VL  - 208
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_208_a1/
LA  - ru
ID  - INTO_2022_208_a1
ER  - 
%0 Journal Article
%A V. A. Voblyi
%T Two combinatorial identities related to enumeration of graphs
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 11-14
%V 208
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_208_a1/
%G ru
%F INTO_2022_208_a1
V. A. Voblyi. Two combinatorial identities related to enumeration of graphs. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 1, Tome 208 (2022), pp. 11-14. http://geodesic.mathdoc.fr/item/INTO_2022_208_a1/