Two combinatorial identities related to enumeration of graphs
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 1, Tome 208 (2022), pp. 11-14
Voir la notice de l'article provenant de la source Math-Net.Ru
From the explicit formula for the number of labeled, series-parallel, $2$-connected graphs with a given number of vertices obtained by the author, two combinatorial identities are derived. Also, proofs of these identities independent of the enumeration of graphs are given.
Keywords:
combinatorial identity, method of coefficients, enumeration, series-parallel graph, 2-connected graph.
@article{INTO_2022_208_a1,
author = {V. A. Voblyi},
title = {Two combinatorial identities related to enumeration of graphs},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {11--14},
publisher = {mathdoc},
volume = {208},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2022_208_a1/}
}
TY - JOUR AU - V. A. Voblyi TI - Two combinatorial identities related to enumeration of graphs JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 11 EP - 14 VL - 208 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_208_a1/ LA - ru ID - INTO_2022_208_a1 ER -
V. A. Voblyi. Two combinatorial identities related to enumeration of graphs. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 1, Tome 208 (2022), pp. 11-14. http://geodesic.mathdoc.fr/item/INTO_2022_208_a1/