On two-dimensional systems of Volterra integral equations of the first kind
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 1, Tome 208 (2022), pp. 3-10

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider two-dimensional systems of Volterra integral equations of the first kind. The case where a system of integral equations of the second kind is obtained by differentiating the equations is well studied. We examine the case where this approach leads to a system of integral equations with an degenerate matrix of the principal part. We formulate sufficient conditions for the existence of a unique smooth solution in terms of matrix pencils.
Keywords: two-dimensional integral equation of Volterra type, integro-algebraic equation, matrix pencil.
@article{INTO_2022_208_a0,
     author = {M. V. Bulatov and L. S. Solovarova},
     title = {On two-dimensional systems of {Volterra} integral equations of the first kind},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {208},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_208_a0/}
}
TY  - JOUR
AU  - M. V. Bulatov
AU  - L. S. Solovarova
TI  - On two-dimensional systems of Volterra integral equations of the first kind
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 3
EP  - 10
VL  - 208
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_208_a0/
LA  - ru
ID  - INTO_2022_208_a0
ER  - 
%0 Journal Article
%A M. V. Bulatov
%A L. S. Solovarova
%T On two-dimensional systems of Volterra integral equations of the first kind
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 3-10
%V 208
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_208_a0/
%G ru
%F INTO_2022_208_a0
M. V. Bulatov; L. S. Solovarova. On two-dimensional systems of Volterra integral equations of the first kind. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 1, Tome 208 (2022), pp. 3-10. http://geodesic.mathdoc.fr/item/INTO_2022_208_a0/