Study of mathematical models of economic processes by methods of the theory of covering mappings
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 2, Tome 207 (2022), pp. 91-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the Walras–Evans–Samuelson dynamic continuous model for a two-commodity market using the theory of covering mappings. We obtain sufficient conditions for the existence of an equilibrium position in this model. The equilibrium in this model is considered as a point of coincidence of two mappings: the demand mapping and the supply mapping, which depend on the prices for the presented types of goods and on the rates of change of these prices.
Keywords: economic equilibrium, demand function, supply function, covering mapping, coincidence point.
@article{INTO_2022_207_a9,
     author = {S. O. Nikanorov},
     title = {Study of mathematical models of economic processes by methods of the theory of covering mappings},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {91--100},
     publisher = {mathdoc},
     volume = {207},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_207_a9/}
}
TY  - JOUR
AU  - S. O. Nikanorov
TI  - Study of mathematical models of economic processes by methods of the theory of covering mappings
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 91
EP  - 100
VL  - 207
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_207_a9/
LA  - ru
ID  - INTO_2022_207_a9
ER  - 
%0 Journal Article
%A S. O. Nikanorov
%T Study of mathematical models of economic processes by methods of the theory of covering mappings
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 91-100
%V 207
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_207_a9/
%G ru
%F INTO_2022_207_a9
S. O. Nikanorov. Study of mathematical models of economic processes by methods of the theory of covering mappings. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 2, Tome 207 (2022), pp. 91-100. http://geodesic.mathdoc.fr/item/INTO_2022_207_a9/

[1] Avakov E. R., Arutyunov A. V., Zhukovskii S. E., “Nakryvayuschie otobrazheniya i ikh prilozheniya k differentsialnym uravneniyam, ne razreshennym otnositelno proizvodnoi”, Differ. uravn., 45:5 (2009), 613–634 | MR | Zbl

[2] Arutyunov A. V., “Tochki sovpadeniya dvukh otobrazhenii”, Funkts, anal. prilozh., 48:1 (2014), 89–-93 | MR | Zbl

[3] Arutyunov A. V., “Ustoichivost tochek sovpadeniya i svoistva nakryvayuschikh otobrazhenii”, Mat. zametki., 86:2 (2009), 163–169 | Zbl

[4] Arutyunov A. V., Zhukovskii S. E., “Suschestvovanie obratnykh otobrazhenii i ikh svoistva”, Tr. Mat. in-ta im. V. A. Steklova., 271 (2010), 12–22 | Zbl

[5] Arutyunov A. V., Zhukovskii S. E., “O nepreryvnosti obratnykh otobrazhenii dlya lipshitsevykh vozmuschenii nakryvayuschikh otobrazhenii”, Fundam. prikl. mat., 19:4 (2014), 93–99

[6] Arutyunov A. V., Zhukovskii S. E., Pavlova N. G., “Ravnovesnaya tsena kak tochka sovpadeniya dvukh otobrazhenii”, Zh. vychisl. mat. mat. fiz., 53:2 (2013) | MR

[7] Zhukovskii S. E., Pavlova N. G., “O prilozhenii teorii nakryvayuschikh otobrazhenii k nelineinoi modeli rynka”, Vestn. Tambov. un-ta. Ser. Estestv. tekhn. nauki., 18:1 (2013), 47–-49

[8] Pavlova N. G., “O primenenii rezultatov teorii nakryvayuschikh otobrazhenii k issledovaniyu dinamicheskikh modelei ekonomicheskikh protsessov”, Vestn. Tambov. un-ta. Ser. Estestv. tekhn. nauki., 22:6 (2017), 1304–-1308

[9] Pavlova N. G., “Issledovanie ekonomicheskikh modelei metodami teorii nakryvayuschikh otobrazhenii”, Vestn. Tambov. un-ta. Ser. Estestv. tekhn. nauki., 18:5 (2013), 2621–2623

[10] Arutyunov A., Avakov E., Gel'man B., Dmitruk A., Obukhovskii V., “Locally covering maps in metric spaces and coincidence points”, J. Fixed Points Theory Appl., 5:1 (2009), 5–-16 | MR

[11] Arutyunov A. V., Pavlova N. G., Shananin A. A., “New conditions for the existence of equilibrium prices”, Yugoslav. J. Oper. Res., 28:1 (2018), 59–77 | DOI | MR | Zbl

[12] Pavlova N. G., “Necessary conditions for closedness of the technology set in dynamical Leontief model”, Proc. 11 Int. Conf. “Management of Large-Scale System Development”, 2018, 1–4

[13] Pavlova N. G., “Applications of the theory of covering maps to the study of dynamic models of economic processes with continuous time”, Mathematical Analysis With Applications, eds. Pinelas S., Kim A., Vlasov V., Springer, Cham, 2020, 123–129 | DOI | MR | Zbl

[14] Pavlova N., Zhukovskaya Z., Zhukovskiy S., “Equilibrium in continuous dynamic market models”, Proc. 15 Int. Conf. on Stability and Oscillations of Nonlinear Control Systems, 2020, 1–3

[15] Smith A., An Inquiry into the Nature and Cause of the Wealth of Nations, William Strahan and Thomas Cadell, London, 1776

[16] Walras L., Elements d'Economie Politique Pure, Corbaz, Lausanne, 1874