The Keynes model of the business cycle and the problem of diffusion instability
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 2, Tome 207 (2022), pp. 77-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a version of the “reaction-diffusion” system, which can be interpreted as a mathematical model of the Keynes business cycle, taking into account spatial factors. The system is considered together with homogeneous Neumann boundary conditions. For such a nonlinear boundary-value problem, bifurcations in a neighborhood of a spatially homogeneous equilibrium state are studied in the near-critical case of zero and a pair of purely imaginary eigenvalues of the stability spectrum. An analysis of bifurcations allows one to obtain sufficient conditions for the existence and stability of spatially homogeneous and spatially inhomogeneous cycles and a spatially inhomogeneous equilibrium state. The analysis of the problem stated is based on the methods of the theory of infinite-dimensional dynamical systems, namely, the method of integral (invariant) manifolds and the method of normal forms. These methods and asymptotic methods of analysis lead to asymptotic formulas for periodic solutions and inhomogeneous equilibria. For such solutions, we also examine their stability.
Keywords: generalized Keynes model, spatial factor, boundary-value problem, stability, asymptotics.
Mots-clés : bifurcation
@article{INTO_2022_207_a8,
     author = {A. N. Kulikov and D. A. Kulikov and D. G. Frolov},
     title = {The {Keynes} model of the business cycle and the problem of diffusion instability},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {77--90},
     publisher = {mathdoc},
     volume = {207},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_207_a8/}
}
TY  - JOUR
AU  - A. N. Kulikov
AU  - D. A. Kulikov
AU  - D. G. Frolov
TI  - The Keynes model of the business cycle and the problem of diffusion instability
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 77
EP  - 90
VL  - 207
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_207_a8/
LA  - ru
ID  - INTO_2022_207_a8
ER  - 
%0 Journal Article
%A A. N. Kulikov
%A D. A. Kulikov
%A D. G. Frolov
%T The Keynes model of the business cycle and the problem of diffusion instability
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 77-90
%V 207
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_207_a8/
%G ru
%F INTO_2022_207_a8
A. N. Kulikov; D. A. Kulikov; D. G. Frolov. The Keynes model of the business cycle and the problem of diffusion instability. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 2, Tome 207 (2022), pp. 77-90. http://geodesic.mathdoc.fr/item/INTO_2022_207_a8/

[9] Vanag V. K., Dissipativnye struktury v reaktsionno-diffuzionnykh sistemakh, Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2008

[10] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: sokhranenie invariantnogo tora pri vozmuscheniyakh”, Differ. uravn., 39:6 (2003), 738–753 | MR | Zbl

[11] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967

[12] Krein S. G., Funktsionalnyi analiz, Nauka, M., 1972 | MR

[13] Kulikov A. N., “O gladkikh invariantnykh mnogoobraziyakh polugruppy nelineinykh operatorov v banakhovom prostranstve”, Issledovaniya po ustoichivosti i teorii kolebanii, M., 1976, 114–129 | MR

[14] Kulikov A. N., “Inertsialnye invariantnye mnogoobraziya nelineinoi polugruppy operatorov v gilbertovom prostranstve”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 185 (2020), 122–131

[15] Kulikov A. N., Kulikov D. A., “Formirovanie volnoobraznykh nanostruktur na poverkhnosti ploskikh podlozhek pri ionnoi bombardirovke”, Zh. vychisl. mat. mat. fiz., 52:5 (2012), 930–945 | MR | Zbl

[16] Kulikov A. N., Kulikov D. A., “Lokalnye bifurkatsii v uravneniyakh Kana—Khillarda, Kuramoto—Sivashinskogo i ikh obobscheniyakh”, Zh. vychisl. mat. mat. fiz., 59:4 (2019), 670–683 | MR | Zbl

[17] Mikhlin S. G., Kurs matematicheskoi fiziki, Nauka, M., 1968 | MR

[18] Romanovskii Yu. M., Stepanova N. V., Chernavskii D.S., Matematicheskaya biofizika, Nauka, M., 1984 | MR

[19] Sobolev S. L., Nekotorye prilozheniya funktsionalnogo analiza v matematicheskoi fizike, L., 1950 | MR

[20] Sobolevskii P. E., “Ob uravneniyakh parabolicheskogo tipa v banakhovom prostranstve”, Tr. Mosk. mat. o-va., 10 (1967), 297–370

[21] Guckenheimer J., Holmes P. J., Nonlinear Oscillations, Dynamical systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983 | MR | Zbl

[22] Keynes J. M., The General Theory of Employment, Interest and Money, Harcourt, New York, 1936 | MR

[23] Kulikov A. N., Kulikov D. A., “Local bifurcations in the periodic boundary-value problem for the generalized Kuramoto–Sivashinsky equation”, Automat. Remote Control., 78:11 (2017), 1955–1966 | DOI | MR | Zbl

[24] Lions J. L., Quelques methodes de resolution des problemes aux limites non lineaires, Paris, 1969 | MR | Zbl

[25] Marsden J. E., McCraken M., The Hopf Bifurcation and Its applications, Springer-Verlag, New York, 1976 | MR | Zbl

[26] Murray J. D., Mathematical Biology. II. Spatial Models and Biomedical Applications, Springer-Verlag, Berlin, 2003 | MR

[27] Puu T., Nonlinear Economic Dynamics, Springer-Verlag, Berlin, 1997 | MR | Zbl

[28] Radin M. A., Kulikov A. N., Kulikov D. A., “Synchronization of fluctuations in the interaction of economies within the framework of the Keynes business cycle model”, Nonlin. Dynam. Psychol. Life Sci., 5:1 (2021), 93–111

[29] Torre V. Existence of limit cycles and control in complete Keynesian systems by theory of bifurcations, Econometrica., 45:6 (1977), 1457–1466 | DOI | MR | Zbl

[30] Turing A. M., “The chemical basis of morphogensis”, Phil. Trans. Roy. Soc. B., 237 (1952), 37–72 | MR | Zbl

[31] Zhang W. B., Synergetic Economics: Time and Change in Nonlinear Economics, Springer-Verlag, Berlin, 1991 | MR | Zbl