On regularization of classical optimality conditions in convex optimal control
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 2, Tome 207 (2022), pp. 120-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss regularization of two classical optimality conditions—the Lagrange principle (PL) and the Pontryagin maximum principle (PMP)—in a convex optimal control problem for a parabolic equation with an operator equality constraint and distributed initial and boundary controls. The regularized Lagrange principle and the Pontryagin maximum principle are based on two regularization parameters. These regularized principles are formulated as existence theorems for the original problem of minimizing approximate solutions.
Keywords: convex optimal control, operator constraint, boundary control, minimizing sequence, regularizing algorithm, Lagrange principle, Pontryagin maximum principle, dual regularization.
Mots-clés : parabolic equation
@article{INTO_2022_207_a12,
     author = {M. I. Sumin},
     title = {On regularization of classical optimality conditions in convex optimal control},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {120--143},
     publisher = {mathdoc},
     volume = {207},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_207_a12/}
}
TY  - JOUR
AU  - M. I. Sumin
TI  - On regularization of classical optimality conditions in convex optimal control
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 120
EP  - 143
VL  - 207
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_207_a12/
LA  - ru
ID  - INTO_2022_207_a12
ER  - 
%0 Journal Article
%A M. I. Sumin
%T On regularization of classical optimality conditions in convex optimal control
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 120-143
%V 207
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_207_a12/
%G ru
%F INTO_2022_207_a12
M. I. Sumin. On regularization of classical optimality conditions in convex optimal control. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 2, Tome 207 (2022), pp. 120-143. http://geodesic.mathdoc.fr/item/INTO_2022_207_a12/

[1] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR

[2] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR

[3] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, M., 1977

[4] Vasilev F. P., Metody optimizatsii, MTsNMO, M., 2011

[5] Gamkrelidze R. V., “Matematicheskie raboty L. S. Pontryagina”, Itogi nauki i tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 60 (1998), 5–23 | Zbl

[6] Golshtein E. G., Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1971

[7] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[8] Plotnikov V. I., “Teoremy edinstvennosti, suschestvovaniya i apriornye svoistva obobschennykh reshenii”, Dokl. AN SSSR., 165:1 (1965), 33–35 | Zbl

[9] Sumin M. I., “Regulyarizovannaya parametricheskaya teorema Kuna—Takkera v gilbertovom prostranstve”, Zh. vychisl. mat. mat. fiz., 51:9 (2011), 1594–1615 | MR | Zbl

[10] Sumin M. I., “Ustoichivoe sekventsialnoe vypukloe programmirovanie v gilbertovom prostranstve i ego prilozhenie k resheniyu neustoichivykh zadach”, Zh. vychisl. mat. mat. fiz., 54:1 (2014), 25–49 | Zbl

[11] Sumin M. I., “Regulyarizovannye printsip Lagranzha i printsip maksimuma Pontryagina v optimalnom upravlenii i obratnykh zadachakh”, Tr. In-ta mat. mekh. UrO RAN., 25:1 (2019), 279–296 | MR

[12] Sumin M. I., “O regulyarizatsii klassicheskikh uslovii optimalnosti v vypuklykh zadachakh optimalnogo upravleniya”, Tr. In-ta mat. mekh. UrO RAN., 26:2 (2020), 252–269 | MR

[13] Sumin M. I., “O regulyarizatsii printsipa Lagranzha i postroenii obobschennykh minimiziruyuschikh posledovatelnostei v vypuklykh zadachakh uslovnoi optimizatsii.”, Vestn. Udmurt. un-ta. Mat. Mekh. Komp. nauki., 30:3 (2020), 410–428 | MR | Zbl

[14] Sumin M. I., “Regulyarizovannyi gradientnyi dvoistvennyi metod resheniya obratnoi zadachi finalnogo nablyudeniya dlya parabolicheskogo uravneniya”, Zh. vychisl. mat. mat. fiz., 44:11 (2004), 2001–2019 | MR | Zbl

[15] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986

[16] Breitenbach T., Borzi A., “A sequential quadratic hamiltonian method for solving parabolic optimal control problems with discontinuous cost functionals”, J. Dynam. Control Syst., 25:3 (2019), 403–435 | DOI | MR | Zbl

[17] Breitenbach T., Borzi A., “On the SQH scheme to solve nonsmooth PDE optimal control problems”, Num. Funct. Anal. Optim., 40:13 (2019), 1489–1531 | DOI | MR | Zbl

[18] Casas E., “Pontryagin's principle for state-constrained boundary control problems of semilinear parabolic equations”, SIAM J. Control Optim., 35 (1997), 1297–1327 | DOI | MR | Zbl

[19] Raymond J.-P., Zidani H., “Hamiltonian Pontryagin's principles for control problems governed by semilinear parabolic equations”, Appl. Math. Optim., 39:2 (1999), 143–177 | DOI | MR | Zbl