Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_207_a12, author = {M. I. Sumin}, title = {On regularization of classical optimality conditions in convex optimal control}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {120--143}, publisher = {mathdoc}, volume = {207}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_207_a12/} }
TY - JOUR AU - M. I. Sumin TI - On regularization of classical optimality conditions in convex optimal control JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 120 EP - 143 VL - 207 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_207_a12/ LA - ru ID - INTO_2022_207_a12 ER -
%0 Journal Article %A M. I. Sumin %T On regularization of classical optimality conditions in convex optimal control %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 120-143 %V 207 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_207_a12/ %G ru %F INTO_2022_207_a12
M. I. Sumin. On regularization of classical optimality conditions in convex optimal control. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 2, Tome 207 (2022), pp. 120-143. http://geodesic.mathdoc.fr/item/INTO_2022_207_a12/
[1] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR
[2] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR
[3] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, M., 1977
[4] Vasilev F. P., Metody optimizatsii, MTsNMO, M., 2011
[5] Gamkrelidze R. V., “Matematicheskie raboty L. S. Pontryagina”, Itogi nauki i tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 60 (1998), 5–23 | Zbl
[6] Golshtein E. G., Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1971
[7] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR
[8] Plotnikov V. I., “Teoremy edinstvennosti, suschestvovaniya i apriornye svoistva obobschennykh reshenii”, Dokl. AN SSSR., 165:1 (1965), 33–35 | Zbl
[9] Sumin M. I., “Regulyarizovannaya parametricheskaya teorema Kuna—Takkera v gilbertovom prostranstve”, Zh. vychisl. mat. mat. fiz., 51:9 (2011), 1594–1615 | MR | Zbl
[10] Sumin M. I., “Ustoichivoe sekventsialnoe vypukloe programmirovanie v gilbertovom prostranstve i ego prilozhenie k resheniyu neustoichivykh zadach”, Zh. vychisl. mat. mat. fiz., 54:1 (2014), 25–49 | Zbl
[11] Sumin M. I., “Regulyarizovannye printsip Lagranzha i printsip maksimuma Pontryagina v optimalnom upravlenii i obratnykh zadachakh”, Tr. In-ta mat. mekh. UrO RAN., 25:1 (2019), 279–296 | MR
[12] Sumin M. I., “O regulyarizatsii klassicheskikh uslovii optimalnosti v vypuklykh zadachakh optimalnogo upravleniya”, Tr. In-ta mat. mekh. UrO RAN., 26:2 (2020), 252–269 | MR
[13] Sumin M. I., “O regulyarizatsii printsipa Lagranzha i postroenii obobschennykh minimiziruyuschikh posledovatelnostei v vypuklykh zadachakh uslovnoi optimizatsii.”, Vestn. Udmurt. un-ta. Mat. Mekh. Komp. nauki., 30:3 (2020), 410–428 | MR | Zbl
[14] Sumin M. I., “Regulyarizovannyi gradientnyi dvoistvennyi metod resheniya obratnoi zadachi finalnogo nablyudeniya dlya parabolicheskogo uravneniya”, Zh. vychisl. mat. mat. fiz., 44:11 (2004), 2001–2019 | MR | Zbl
[15] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986
[16] Breitenbach T., Borzi A., “A sequential quadratic hamiltonian method for solving parabolic optimal control problems with discontinuous cost functionals”, J. Dynam. Control Syst., 25:3 (2019), 403–435 | DOI | MR | Zbl
[17] Breitenbach T., Borzi A., “On the SQH scheme to solve nonsmooth PDE optimal control problems”, Num. Funct. Anal. Optim., 40:13 (2019), 1489–1531 | DOI | MR | Zbl
[18] Casas E., “Pontryagin's principle for state-constrained boundary control problems of semilinear parabolic equations”, SIAM J. Control Optim., 35 (1997), 1297–1327 | DOI | MR | Zbl
[19] Raymond J.-P., Zidani H., “Hamiltonian Pontryagin's principles for control problems governed by semilinear parabolic equations”, Appl. Math. Optim., 39:2 (1999), 143–177 | DOI | MR | Zbl