On some features of diffusion logistics models
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 2, Tome 207 (2022), pp. 101-106
Voir la notice de l'article provenant de la source Math-Net.Ru
We note that in some cases diffusion terms in an ordinary differential equations (for example, the logistic equation) can improve (weaken) sufficient conditions for the stability of a stationary solution. Examples are given.
Mots-clés :
diffusion model
Keywords: stationary state, stability.
Keywords: stationary state, stability.
@article{INTO_2022_207_a10,
author = {M. V. Polovinkina},
title = {On some features of diffusion logistics models},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {101--106},
publisher = {mathdoc},
volume = {207},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2022_207_a10/}
}
TY - JOUR AU - M. V. Polovinkina TI - On some features of diffusion logistics models JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 101 EP - 106 VL - 207 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_207_a10/ LA - ru ID - INTO_2022_207_a10 ER -
M. V. Polovinkina. On some features of diffusion logistics models. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 2, Tome 207 (2022), pp. 101-106. http://geodesic.mathdoc.fr/item/INTO_2022_207_a10/