Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_206_a8, author = {A. A. Kretov and M. V. Polovinkina and I. P. Polovinkin}, title = {On some models in linguistics}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {98--106}, publisher = {mathdoc}, volume = {206}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_206_a8/} }
TY - JOUR AU - A. A. Kretov AU - M. V. Polovinkina AU - I. P. Polovinkin TI - On some models in linguistics JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 98 EP - 106 VL - 206 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_206_a8/ LA - ru ID - INTO_2022_206_a8 ER -
%0 Journal Article %A A. A. Kretov %A M. V. Polovinkina %A I. P. Polovinkin %T On some models in linguistics %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 98-106 %V 206 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_206_a8/ %G ru %F INTO_2022_206_a8
A. A. Kretov; M. V. Polovinkina; I. P. Polovinkin. On some models in linguistics. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 1, Tome 206 (2022), pp. 98-106. http://geodesic.mathdoc.fr/item/INTO_2022_206_a8/
[1] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR
[2] Kretov A. A., Polovinkina M. V., Polovinkin I. P., Lomets M. V., “O modelirovanii izmenenii yazyka”, Mat. Mezhdunar. konf. «Sovremennye metody teorii funktsii i smezhnye problemy», Voronezh. zimnyaya mat. shkola (Voronezh, 28 yanvarya – 2 fevralya 2021 g.), Izd-vo VGU, Voronezh, 2021, 172
[3] Kolpak E. P., Gavrilova A. V., “Matematicheskaya model vozniknoveniya kulturnykh tsentrov i techenii v zhivopisi”, Mol. uchenyi., 22 (260) (2019), 1–17
[4] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[5] Meshkov V. Z., Polovinkin I. P., Semenov M. E., “Ob ustoichivosti statsionarnogo resheniya uravneniya Khotellinga”, Obozr. prikl. prom. mat., 9:1 (2002), 226–227.
[6] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976
[7] Piotrovskii R. G., Bektaev K. B., Piotrovskaya A. A., Matematicheskaya lingvistika, Vysshaya shkola, M., 1977
[8] Samarskii A. A., Mikhailov A. P., Matematicheskoe modelirovanie: Idei. Metody. Primery, Fizmatlit, M., 2005 | MR
[9] Tuldava Yu. A., Problemy i metody kvantitativno-sistemnogo issledovaniya leksiki, Valgus, Tallin, 1987
[10] Brauer F., Castillo-Chavez C., Mathematical Models in Population Biology and Epidemiology, Springer, New York, 2012 | MR | Zbl
[11] Friedrichs K. O., Spectral Theory of Operators in Hilbert Space, Springer-Verlag, New York–Heidelberg–Berlin, 1973 | MR | Zbl
[12] Gogoleva T. N., Shchepina I. N., Polovinkina M. V., Rabeeakh S. A., “On stability of a stationary solution to the Hotelling migration equation”, J. Phys. Conf. Ser., 1203 (2019), 012041 | DOI | MR
[13] Puu T., Nonlinear Economic Dynamics, Springer-Verlag, Berlin, 1997 | MR | Zbl
[14] Rektorys K., Variational Methods in Mathematics, Science and Engineering, Springer Science Business Media, 2012 | MR