On some models in linguistics
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 1, Tome 206 (2022), pp. 98-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two diffusion models of language change are considered. The first model is an initial-boundary-value problem for the Hotelling equation. This model describes the change in the size of a natural language vocabulary over time under the influence of its development and diffusion penetration. The other model describes the process of interaction between native speakers of two languages. The stability of stationary solutions is discussed.
Mots-clés : diffusion model
Keywords: steady state, stability, vocabulary growth.
@article{INTO_2022_206_a8,
     author = {A. A. Kretov and M. V. Polovinkina and I. P. Polovinkin},
     title = {On some models in linguistics},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {98--106},
     publisher = {mathdoc},
     volume = {206},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_206_a8/}
}
TY  - JOUR
AU  - A. A. Kretov
AU  - M. V. Polovinkina
AU  - I. P. Polovinkin
TI  - On some models in linguistics
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 98
EP  - 106
VL  - 206
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_206_a8/
LA  - ru
ID  - INTO_2022_206_a8
ER  - 
%0 Journal Article
%A A. A. Kretov
%A M. V. Polovinkina
%A I. P. Polovinkin
%T On some models in linguistics
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 98-106
%V 206
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_206_a8/
%G ru
%F INTO_2022_206_a8
A. A. Kretov; M. V. Polovinkina; I. P. Polovinkin. On some models in linguistics. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 1, Tome 206 (2022), pp. 98-106. http://geodesic.mathdoc.fr/item/INTO_2022_206_a8/

[1] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR

[2] Kretov A. A., Polovinkina M. V., Polovinkin I. P., Lomets M. V., “O modelirovanii izmenenii yazyka”, Mat. Mezhdunar. konf. «Sovremennye metody teorii funktsii i smezhnye problemy», Voronezh. zimnyaya mat. shkola (Voronezh, 28 yanvarya – 2 fevralya 2021 g.), Izd-vo VGU, Voronezh, 2021, 172

[3] Kolpak E. P., Gavrilova A. V., “Matematicheskaya model vozniknoveniya kulturnykh tsentrov i techenii v zhivopisi”, Mol. uchenyi., 22 (260) (2019), 1–17

[4] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[5] Meshkov V. Z., Polovinkin I. P., Semenov M. E., “Ob ustoichivosti statsionarnogo resheniya uravneniya Khotellinga”, Obozr. prikl. prom. mat., 9:1 (2002), 226–227.

[6] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976

[7] Piotrovskii R. G., Bektaev K. B., Piotrovskaya A. A., Matematicheskaya lingvistika, Vysshaya shkola, M., 1977

[8] Samarskii A. A., Mikhailov A. P., Matematicheskoe modelirovanie: Idei. Metody. Primery, Fizmatlit, M., 2005 | MR

[9] Tuldava Yu. A., Problemy i metody kvantitativno-sistemnogo issledovaniya leksiki, Valgus, Tallin, 1987

[10] Brauer F., Castillo-Chavez C., Mathematical Models in Population Biology and Epidemiology, Springer, New York, 2012 | MR | Zbl

[11] Friedrichs K. O., Spectral Theory of Operators in Hilbert Space, Springer-Verlag, New York–Heidelberg–Berlin, 1973 | MR | Zbl

[12] Gogoleva T. N., Shchepina I. N., Polovinkina M. V., Rabeeakh S. A., “On stability of a stationary solution to the Hotelling migration equation”, J. Phys. Conf. Ser., 1203 (2019), 012041 | DOI | MR

[13] Puu T., Nonlinear Economic Dynamics, Springer-Verlag, Berlin, 1997 | MR | Zbl

[14] Rektorys K., Variational Methods in Mathematics, Science and Engineering, Springer Science Business Media, 2012 | MR