On the solvability of a fractional loaded heat conduction problem
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 1, Tome 206 (2022), pp. 82-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study a boundary-value problem for the loaded fractional heat equation; the loaded term is represented as the fractional Caputo derivative with respect to the time derivative.
Keywords: heat equation, fractional equation, fractional derivative.
@article{INTO_2022_206_a7,
     author = {M. T. Kosmakova and L. Zh. Kasymova},
     title = {On the solvability of a fractional loaded heat conduction problem},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {82--97},
     publisher = {mathdoc},
     volume = {206},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_206_a7/}
}
TY  - JOUR
AU  - M. T. Kosmakova
AU  - L. Zh. Kasymova
TI  - On the solvability of a fractional loaded heat conduction problem
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 82
EP  - 97
VL  - 206
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_206_a7/
LA  - ru
ID  - INTO_2022_206_a7
ER  - 
%0 Journal Article
%A M. T. Kosmakova
%A L. Zh. Kasymova
%T On the solvability of a fractional loaded heat conduction problem
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 82-97
%V 206
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_206_a7/
%G ru
%F INTO_2022_206_a7
M. T. Kosmakova; L. Zh. Kasymova. On the solvability of a fractional loaded heat conduction problem. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 1, Tome 206 (2022), pp. 82-97. http://geodesic.mathdoc.fr/item/INTO_2022_206_a7/

[17] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963 | MR

[18] Dzhenaliev M. T., “Ob odnoi kraevoi zadache dlya lineinogo nagruzhennogo parabolicheskogo uravneniya s nelokalnymi granichnymi usloviyami”, Differ. uravn., 27:10 (1991), 1825–1827 | MR | Zbl

[19] Dzhenaliev M. T., “O nagruzhennykh uravneniyakh s periodicheskimi granichnymi usloviyami”, Differ. uravn., 37:1 (2001), 48–54 | MR | Zbl

[20] Dzhenaliev M. T., Ramazanov M. I., Nagruzhennye uravneniya kak vozmuscheniya differentsialnykh uravnenii, Gylym, Almaty, 2010

[21] Iskakov S. A., Ramazanov M. I., Ivanov I. A., “Pervaya kraevaya zadacha dlya uravneniya teploprovodnosti s nagruzkoi drobnogo poryadka, II”, Vestn. Karagand. un-ta. Ser. Mat., 2015, no. 2 (78), 25–30

[22] Kosmakova M. T., Kasymova L. Zh., “K resheniyu uravneniya teploprovodnosti s drobnoi nagruzkoi”, Vestn. KazNU. Ser. mat. mekh. inform., 104:4 (2019), 50–62

[23] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995

[24] Nakhushev A. M., Elementy drobnogo ischisleniya i ikh prilozheniya, NII PMA KBNTs RAN, Nalchik, 2000

[25] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003

[26] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. T. 1. Elementarnye funktsii, Fizmatlit, M., 2002 | MR

[27] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. T. 3. Spetsialnye funktsii. Dopolnitelnye glavy, Fizmatlit, M., 2003 | MR

[28] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987

[29] Bateman H., Erdélyi A., Higher Transcendental Functions, McGraw-Hill, New York, 1953

[30] Cao Labora D., Rodriguez-Lopez R., Belmekki M., “Existence of solutions to nonlocal boundary value problems for fractional differential equations with impulses”, Electron. J. Differ. Equations., 15 (2020), 1–16 | MR

[31] Caputo M., “Lineal model of dissipation whose $Q$ is almost frequency independent, II”, Geophys. J. Astronom. Soc., 13 (1967), 529–539 | DOI

[32] Diethelm K., The Analysis of Fractional Differential Equations, Springer-Verlag, Berlin, 2010 | MR | Zbl

[33] Le Mehaute A., Tenreiro Machado J. A., Trigeassou J. C., Sabatier J. (eds.), Fractional Differentiation and Its Applications, Bordeaux Univ., Bordeaux, 2003 | MR

[34] Luke Y. L., The Special Functions and Their Approximations, London, 1969 | MR | Zbl

[35] Polyanin A. D., Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman Hall, New York–London, 2002 | MR | Zbl

[36] Ramazanov M.I., Kosmakova M. T., Kasymova L. Zh., “On a problem of heat equation with fractional load”, Lobachevskii J. Math., 41:9 (2020), 1873–1885 | DOI | MR | Zbl

[37] Yusuf A., Qureshi S., Inc M., Aliyu A. I., Baleanu D., Shaikh A. A., “Two-strain epidemic model involving fractional derivative with Mittag-Leffler kernel”, Chaos., 28 (2018), 123121 | DOI | MR | Zbl