On the solvability of a fractional loaded heat conduction problem
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 1, Tome 206 (2022), pp. 82-97

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study a boundary-value problem for the loaded fractional heat equation; the loaded term is represented as the fractional Caputo derivative with respect to the time derivative.
Keywords: heat equation, fractional equation, fractional derivative.
@article{INTO_2022_206_a7,
     author = {M. T. Kosmakova and L. Zh. Kasymova},
     title = {On the solvability of a fractional loaded heat conduction problem},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {82--97},
     publisher = {mathdoc},
     volume = {206},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_206_a7/}
}
TY  - JOUR
AU  - M. T. Kosmakova
AU  - L. Zh. Kasymova
TI  - On the solvability of a fractional loaded heat conduction problem
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 82
EP  - 97
VL  - 206
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_206_a7/
LA  - ru
ID  - INTO_2022_206_a7
ER  - 
%0 Journal Article
%A M. T. Kosmakova
%A L. Zh. Kasymova
%T On the solvability of a fractional loaded heat conduction problem
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 82-97
%V 206
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_206_a7/
%G ru
%F INTO_2022_206_a7
M. T. Kosmakova; L. Zh. Kasymova. On the solvability of a fractional loaded heat conduction problem. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 1, Tome 206 (2022), pp. 82-97. http://geodesic.mathdoc.fr/item/INTO_2022_206_a7/