The law of conservation of electric charge and the physical interpretation of the generalized Cauchy--Riemann system
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 1, Tome 206 (2022), pp. 35-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we continue the study of generalizations of the Cauchy–Riemann (CR) conditions obtained earlier, which, under certain assumptions, can be interpreted as Maxwell's equations of electromagnetic field. The main mathematical tools used in the work is the technique of two quaternion variables. This work does not contain any physical statements, but is a theoretical analysis that can be carried out for systems of generalized CR conditions.
Mots-clés : quaternion, Laplace equation
Keywords: spinor, Cauchy–Riemann system, Maxwell system, law of conservation of electric charge.
@article{INTO_2022_206_a3,
     author = {Yu. A. Gladyshev and E. A. Loshkareva},
     title = {The law of conservation of electric charge and the physical interpretation of the generalized {Cauchy--Riemann} system},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {35--41},
     publisher = {mathdoc},
     volume = {206},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_206_a3/}
}
TY  - JOUR
AU  - Yu. A. Gladyshev
AU  - E. A. Loshkareva
TI  - The law of conservation of electric charge and the physical interpretation of the generalized Cauchy--Riemann system
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 35
EP  - 41
VL  - 206
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_206_a3/
LA  - ru
ID  - INTO_2022_206_a3
ER  - 
%0 Journal Article
%A Yu. A. Gladyshev
%A E. A. Loshkareva
%T The law of conservation of electric charge and the physical interpretation of the generalized Cauchy--Riemann system
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 35-41
%V 206
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_206_a3/
%G ru
%F INTO_2022_206_a3
Yu. A. Gladyshev; E. A. Loshkareva. The law of conservation of electric charge and the physical interpretation of the generalized Cauchy--Riemann system. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 1, Tome 206 (2022), pp. 35-41. http://geodesic.mathdoc.fr/item/INTO_2022_206_a3/

[1] Gladyshev Yu. A., “Kvaternionnye metody v elektrodinamike”, Tr. mat. tsentra im. N. I. Lobachevskogo., 57 (2019), 111–115

[2] Gladyshev Yu. A., Formalizm Beltrami—Bersa i ego prilozheniya v matematicheskoi fizike, Izd-vo KGPU, Kaluga, 1997

[3] Kostrikin A. I., Lineinaya algebra i geometriya, Izd-vo MGU, M., 1980

[4] Landau L. D., Teoriya polya, Nauka, M., 1973

[5] Arbab I. A., “Maxwellian quantum mechanics”, Int. J. Light Electron Optics., 136 (2017), 382–389 | DOI

[6] Dovlatova A., Yerchuck D., “Concept of fully dually symmetric electrodynamics”, J. Phys. Conf. Ser., 343 (2012), 012133 | DOI

[7] Mingjie Li, Peng Shi, Luping Du, Xiaocong Yuan, “Electronic Maxwell's equations”, New J. Phys., 22:11 (2020), 113019 | DOI | MR

[8] Moisil M. G., “Sur los quaternions monogènes”, Bull. Sci. Math., 55 (1931), 168–174

[9] Praveen S. B., Negi O. P. S., “Revisiting quaternion dual electrodynamics”, Int. J. Theor. Phys., 47:12 (2008), 3108–3120 | DOI | MR

[10] Red'kov V., Tolkachev E., “Quaternions and small Lorentz groups in moncommutative electrodynamics”, Adv. Appl. Clifford Algebras., 20:2 (2010), 393–400 | DOI | MR | Zbl

[11] Virchenko V. L., Derkach V. N., “To the theory of electromagnetic field in potentials”, Int. J. Infrared Millimeter Waves., 20:7 (1999), 1327–1337 | DOI

[12] Wang H., Ren G., “Octonion analysis of several variables”, Commun. Math. Stat., 2:2 (2014), 163–185 | DOI | MR | Zbl

[13] Yerchuck D., Dovlatova A., Alexandrov A., “Symmetry of differential equations and quantum theory”, J. Phys. Conf. Ser., 490:1 (2013), 012233