Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_206_a3, author = {Yu. A. Gladyshev and E. A. Loshkareva}, title = {The law of conservation of electric charge and the physical interpretation of the generalized {Cauchy--Riemann} system}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {35--41}, publisher = {mathdoc}, volume = {206}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_206_a3/} }
TY - JOUR AU - Yu. A. Gladyshev AU - E. A. Loshkareva TI - The law of conservation of electric charge and the physical interpretation of the generalized Cauchy--Riemann system JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 35 EP - 41 VL - 206 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_206_a3/ LA - ru ID - INTO_2022_206_a3 ER -
%0 Journal Article %A Yu. A. Gladyshev %A E. A. Loshkareva %T The law of conservation of electric charge and the physical interpretation of the generalized Cauchy--Riemann system %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 35-41 %V 206 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_206_a3/ %G ru %F INTO_2022_206_a3
Yu. A. Gladyshev; E. A. Loshkareva. The law of conservation of electric charge and the physical interpretation of the generalized Cauchy--Riemann system. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 1, Tome 206 (2022), pp. 35-41. http://geodesic.mathdoc.fr/item/INTO_2022_206_a3/
[1] Gladyshev Yu. A., “Kvaternionnye metody v elektrodinamike”, Tr. mat. tsentra im. N. I. Lobachevskogo., 57 (2019), 111–115
[2] Gladyshev Yu. A., Formalizm Beltrami—Bersa i ego prilozheniya v matematicheskoi fizike, Izd-vo KGPU, Kaluga, 1997
[3] Kostrikin A. I., Lineinaya algebra i geometriya, Izd-vo MGU, M., 1980
[4] Landau L. D., Teoriya polya, Nauka, M., 1973
[5] Arbab I. A., “Maxwellian quantum mechanics”, Int. J. Light Electron Optics., 136 (2017), 382–389 | DOI
[6] Dovlatova A., Yerchuck D., “Concept of fully dually symmetric electrodynamics”, J. Phys. Conf. Ser., 343 (2012), 012133 | DOI
[7] Mingjie Li, Peng Shi, Luping Du, Xiaocong Yuan, “Electronic Maxwell's equations”, New J. Phys., 22:11 (2020), 113019 | DOI | MR
[8] Moisil M. G., “Sur los quaternions monogènes”, Bull. Sci. Math., 55 (1931), 168–174
[9] Praveen S. B., Negi O. P. S., “Revisiting quaternion dual electrodynamics”, Int. J. Theor. Phys., 47:12 (2008), 3108–3120 | DOI | MR
[10] Red'kov V., Tolkachev E., “Quaternions and small Lorentz groups in moncommutative electrodynamics”, Adv. Appl. Clifford Algebras., 20:2 (2010), 393–400 | DOI | MR | Zbl
[11] Virchenko V. L., Derkach V. N., “To the theory of electromagnetic field in potentials”, Int. J. Infrared Millimeter Waves., 20:7 (1999), 1327–1337 | DOI
[12] Wang H., Ren G., “Octonion analysis of several variables”, Commun. Math. Stat., 2:2 (2014), 163–185 | DOI | MR | Zbl
[13] Yerchuck D., Dovlatova A., Alexandrov A., “Symmetry of differential equations and quantum theory”, J. Phys. Conf. Ser., 490:1 (2013), 012233