Local extension of the translation group of a plane to a locally doubly transitive transformation Lie group of the same plane
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 85-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine the problem of finding all locally doubly transitive extensions of the translation group of a two-dimensional space. This problem is reduced to the search for finding Lie algebras of locally doubly transitive extensions of the translation group. The basis operators of such Lie algebras are found from solutions of systems of second-order differential equations. We prove that the matrices of these systems commute with each other and can be simplified by reduction to the Jordan form. From the solutions of systems of differential equations, the Lie algebras of all locally doubly transitive extensions of the translation group of the plane are obtained. Using the exponential mapping, we calculate locally doubly transitive Lie transformation groups.
Keywords: doubly transitive transformation group, Lie algebra
Mots-clés : Jordan form.
@article{INTO_2022_204_a8,
     author = {V. A. Kyrov},
     title = {Local extension of the translation group of a plane to a locally doubly transitive transformation {Lie} group of the same plane},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {85--96},
     publisher = {mathdoc},
     volume = {204},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_204_a8/}
}
TY  - JOUR
AU  - V. A. Kyrov
TI  - Local extension of the translation group of a plane to a locally doubly transitive transformation Lie group of the same plane
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 85
EP  - 96
VL  - 204
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_204_a8/
LA  - ru
ID  - INTO_2022_204_a8
ER  - 
%0 Journal Article
%A V. A. Kyrov
%T Local extension of the translation group of a plane to a locally doubly transitive transformation Lie group of the same plane
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 85-96
%V 204
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_204_a8/
%G ru
%F INTO_2022_204_a8
V. A. Kyrov. Local extension of the translation group of a plane to a locally doubly transitive transformation Lie group of the same plane. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 85-96. http://geodesic.mathdoc.fr/item/INTO_2022_204_a8/

[1] Bredon G., Vvedenie v teoriyu kompaktnykh grupp preobrazovanii, Nauka, M., 1980

[2] Gantmakher F. R., Teoriya matrits, Fizmatlit, M., 2010 | MR

[3] Gorbatsevich V. V., “O rasshirenii tranzitivnykh deistvii grupp Li”, Izv. RAN. Ser. mat., 81:6 (2017), 86–99 | MR | Zbl

[4] Kostrikin A. I., Vvedenie v algebru, Nauka, M., 1977 | MR

[5] Kyrov V. A., Mikhailichenko G. G., “Vlozhenie additivnoi dvumetricheskoi fenomenologicheski simmetrichnoi geometrii dvukh mnozhestv ranga $(2,2)$ v dvumetricheskie fenomenologicheski simmetrichnye geometrii dvukh mnozhestv ranga $(3,2)$”, Vestn. Udmurtsk. un-ta. Mat. Mekh. Kompyut. nauki., 28:3 (2018), 305–327 | MR | Zbl

[6] Mikhailichenko G. G., Gruppovaya simmetriya fizicheskikh ctruktur, Barnaul. gos. ped. un-t, Barnaul, 2003

[7] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR