Multipotent sets in homogeneous commutative monoids
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 27-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce the concept of $k$-potent sets in monoids, $k\in\mathbb{N}$, establish their simplest properties, and indicate a class of homogeneous monoids with a set of generating elements. We find simple necessary conditions of the $k$-potency of a fixed set in such a monoid. For commutative monoids, we establish an isormorphism between them and the monoid $\mathbb{N}_+^{\mathfrak{J}}$ with the corresponding label set $\mathfrak{J}$. For commutative homogeneous monoids with sets of generators, we prove necessary and sufficient conditions for the $k$-potency of their subsets. Finally, we apply this result to the binary Goldbach problem in analytic number theory.
Keywords: commutativity, monoid, homogeneity, prime number, cycle.
Mots-clés : multipotent set
@article{INTO_2022_204_a2,
     author = {Yu. P. Virchenko},
     title = {Multipotent sets in homogeneous commutative monoids},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {27--36},
     publisher = {mathdoc},
     volume = {204},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_204_a2/}
}
TY  - JOUR
AU  - Yu. P. Virchenko
TI  - Multipotent sets in homogeneous commutative monoids
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 27
EP  - 36
VL  - 204
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_204_a2/
LA  - ru
ID  - INTO_2022_204_a2
ER  - 
%0 Journal Article
%A Yu. P. Virchenko
%T Multipotent sets in homogeneous commutative monoids
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 27-36
%V 204
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_204_a2/
%G ru
%F INTO_2022_204_a2
Yu. P. Virchenko. Multipotent sets in homogeneous commutative monoids. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 27-36. http://geodesic.mathdoc.fr/item/INTO_2022_204_a2/

[1] Burbaki N., Elementy matematiki. Algebra. Chast 1. Algebraicheskie struktury. Lineinaya i polilineinaya algebra, Fizmatlit, M., 1962

[2] Vinogradov I. M., Osnovy teorii chisel, Gostekhizdat, M.-L., 1952 | MR

[3] Lyapin E. S., Polugruppy, Fizmatlit, M., 1960 | MR

[4] Prakhar K. P., Raspredelenie prostykh chisel, Mir, M., 1967

[5] Chandrasekkharan K., Vvedenie v analiticheskuyu teoriyu chisel, Mir, M., 1974

[6] Shevrin L. N., “Polugruppy”, Spravochnaya matematicheskaya biblioteka. Obschaya algebra, v. 2, Nauka, M., 1991, 11–191

[7] Goldbach C., “Lettre XLIII”, Correspondance mathematique et physique de quelques celebres geometres du XVIII-eme siecle, v. 1, St. Petersbourg, 1743, 125–129

[8] Waring E., Meditationes Algebraicae, Cambridge, 1770 | MR