Asymptotics of the splitting transformation for a linear stationary singularly perturbed system with delay
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 170-184

Voir la notice de l'article provenant de la source Math-Net.Ru

The splitting transformation is a generalization of the well-known Chang transformation for linear, stationary, singularly perturbed system with many delays in slow-state variables; it reduces the original two-speed system to two independent subsystems of smaller dimensions with different rates of change of variables. The splitting transformation leads us to Riccati and Sylvester equations for functional matrices, which can be found in the form of asymptotic series in powers of the small parameter. In this work, we prove that asymptotic approximations of any order of accuracy based on these series can be represented as finite sums in powers of $\lambda$. We compare exact solutions with approximations obtained by the method proposed.
Keywords: singularly perturbed system, delay, splitting transformation, asymptotic approximation
Mots-clés : decomposition.
@article{INTO_2022_204_a16,
     author = {V. Tsekhan and Ch.-A. Naligama},
     title = {Asymptotics of the splitting transformation for a linear stationary singularly perturbed system with delay},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {170--184},
     publisher = {mathdoc},
     volume = {204},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_204_a16/}
}
TY  - JOUR
AU  - V. Tsekhan
AU  - Ch.-A. Naligama
TI  - Asymptotics of the splitting transformation for a linear stationary singularly perturbed system with delay
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 170
EP  - 184
VL  - 204
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_204_a16/
LA  - ru
ID  - INTO_2022_204_a16
ER  - 
%0 Journal Article
%A V. Tsekhan
%A Ch.-A. Naligama
%T Asymptotics of the splitting transformation for a linear stationary singularly perturbed system with delay
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 170-184
%V 204
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_204_a16/
%G ru
%F INTO_2022_204_a16
V. Tsekhan; Ch.-A. Naligama. Asymptotics of the splitting transformation for a linear stationary singularly perturbed system with delay. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 170-184. http://geodesic.mathdoc.fr/item/INTO_2022_204_a16/