Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_204_a16, author = {V. Tsekhan and Ch.-A. Naligama}, title = {Asymptotics of the splitting transformation for a linear stationary singularly perturbed system with delay}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {170--184}, publisher = {mathdoc}, volume = {204}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_204_a16/} }
TY - JOUR AU - V. Tsekhan AU - Ch.-A. Naligama TI - Asymptotics of the splitting transformation for a linear stationary singularly perturbed system with delay JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 170 EP - 184 VL - 204 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_204_a16/ LA - ru ID - INTO_2022_204_a16 ER -
%0 Journal Article %A V. Tsekhan %A Ch.-A. Naligama %T Asymptotics of the splitting transformation for a linear stationary singularly perturbed system with delay %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 170-184 %V 204 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_204_a16/ %G ru %F INTO_2022_204_a16
V. Tsekhan; Ch.-A. Naligama. Asymptotics of the splitting transformation for a linear stationary singularly perturbed system with delay. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 170-184. http://geodesic.mathdoc.fr/item/INTO_2022_204_a16/
[1] Vasileva A. B., Dmitriev M. G., “Singulyarnye vozmuscheniya v zadachakh optimalnogo upravleniya”, Itogi nauki i tekhn. Ser. Mat. anal., 20 (1982), 3–77 | MR | Zbl
[2] Dmitriev M. G., Kurina G. A., “Singulyarnye vozmuscheniya v zadachakh upravleniya”, Avtomat. telemekh., 2006, no. 1, 3–51 | Zbl
[3] Kopeikina T. B., “Ob upravlyaemosti lineinykh singulyarno vozmuschennykh sistem s zapazdyvaniem”, Differ. uravn., 1989, 1508–1518 | Zbl
[4] Kurina G. A., “O polnoi upravlyaemosti raznotempovykh singulyarno vozmuschennykh sistem”, Mat. zametki., 52:4 (1992), 56–61 | Zbl
[5] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984
[6] Tsekhan O. B., “Rasscheplyayuschee preobrazovanie dlya lineinoi statsionarnoi singulyarno vozmuschennoi sistemy s zapazdyvaniem i ego primenenie k analizu i upravleniyu spektrom”, Vesn. Grozd. un-ta. Ser. 2. Mat., 7:1 (2017), 50–61
[7] Bellman R., Cooke K., Differential Difference Equations, Academic Press, New York, 1963 | MR | Zbl
[8] Chang K., “Singular perturbations of a general boundary-value problem”, SIAM J. Math. Anal., 3:3 (1972), 520–526 | DOI | MR | Zbl
[9] Chen X., Heidarinejad M., Liu J., Christofides P. D., “Composite fast-slow MPC design for nonlinear singularly perturbed systems”, AIChE J., 58:6 (2012), 1802–1811 | DOI
[10] Fridman E., “Decoupling transformation of singularly perturbed systems with small delays and its applications”, Z. Angew. Math. Mech., 76:2 (1996), 201–204 | Zbl
[11] Gajic Z., Shen X., Parallel Algorithms for Optimal Control of Large Scale Linear Systems, Springer Verlag, London, 1993 | MR | Zbl
[12] Glizer V. Ya., “$L_2$-Stabilizability conditions for a class of nonstandard singularly perturbed functional-differential systems”, Dynam. Contin. Discr. Impulsive Syst. Ser. B: Appl. Algorithms., 16 (2009), 181–213 | MR | Zbl
[13] Glizer V. Ya., “Approximate state-space controllability of linear singularly perturbed systems with two scales of state delays”, Asympt. Anal., 107:1-2 (2018.), 73–114 | MR | Zbl
[14] Johnson R., Singular Perturbation Theory: Mathematical and Analytical Techniques with Applications to Engineering, Springer-Verlag, 2005 | MR | Zbl
[15] Kokotovic P. V., Haddad A. H., “Controllability and time-optimal control of systems with slow and fast modes”, IEEE Trans. Automat. Control., 20:1 (1975), 111–113 | DOI | MR | Zbl
[16] Kokotovic P. V., Khalil H. K., O'Reilly J., Singular Perturbation Methods in Control: Analysis and Design, Academic Press, New York, 1986 | MR | Zbl
[17] Magalhaes L. T., “Exponential estimates for singularly perturbed linear functional differential equations”, J. Math. Anal. Appl., 103 (1984), 443–460 | DOI | MR | Zbl
[18] Manitius A. Z., Olbrot A. W., “Finite spectrum assignment problem for systems with delays”, IEEE Trans. Automat. Control., 24 (1979), 541–553 | DOI | MR | Zbl
[19] Michiels W., Niculescu S. I., Stability and Stabilization of Time Delay Systems: An Eigenvalue Based Approach, SIAM, Philadelphia, 2007 | MR | Zbl
[20] Niculescu S. I., Delay Effects on Stability: A Robust Control Approach, Springer, New York, 2001 | MR | Zbl
[21] Pekař L., Gao Q., “Spectrum analysis of LTI continuous-time systems with constant delays: A literature overview of some recent results”, IEEE Access., 6 (2018), 35457–35491 | DOI
[22] Prljaca N., Gajic Z., “General transformation for block diagonalization of multitime-scale singularly perturbed linear systems”, IEEE Trans. Automat. Control., 53:5 (2008), 1303–1305 | DOI | MR | Zbl
[23] Seuret A., Özbay H., Bonnet C. Mounier H. (eds.)., Low-Complexity Controllers for Time-Delay Systems, Springer, Cham, 2014 | MR | Zbl
[24] Tsekhan O., “Complete controllability conditions for linear singularly perturbed time-invariant systems with multiple delays via Chang-type transformation”, Axioms., 8:2 (2019), 71 | DOI | MR | Zbl
[25] Yang X., Zhu J. J., “A generalization of Chang transformation for linear time-varying systems”, Proc. 49 IEEE Conf. on Decision and Control (Atlanta, GA), 2010, 6863–6869
[26] Yang X., Zhu J. J., “Chang transformation for decoupling of singularly perturbed linear slowly time-varying systems”, Proc. 51 IEEE Conf. on Decision and Control (Maui, Hawaii, USA), 2012, 5755–5760 | MR
[27] Zhang Y., Naidu D. S., Cai C., et al., “Singular perturbations and time scales in control theories and applications: An overview 2002–2012”, Int. J. Inf. Syst. Sci., 9:1 (2014), 1–36 | MR