Extremal properties of means of fuzzy random variables
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 160-169

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine extremal properties of fuzzy expectations and expectations of fuzzy random variables. We introduce a new mean characteristic—a scalar random variable that characterizes a given fuzzy random variable—and prove its extremal properties. Also, we study linear regressions of fuzzy random variables, obtain a formula for the optimal linear fuzzy regression, and prove that its correlation with the predicted value is maximal.
Keywords: fuzzy random variable, mean value, extremal property.
@article{INTO_2022_204_a15,
     author = {V. L. Khatskevich},
     title = {Extremal properties of means of fuzzy random variables},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {160--169},
     publisher = {mathdoc},
     volume = {204},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_204_a15/}
}
TY  - JOUR
AU  - V. L. Khatskevich
TI  - Extremal properties of means of fuzzy random variables
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 160
EP  - 169
VL  - 204
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_204_a15/
LA  - ru
ID  - INTO_2022_204_a15
ER  - 
%0 Journal Article
%A V. L. Khatskevich
%T Extremal properties of means of fuzzy random variables
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 160-169
%V 204
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_204_a15/
%G ru
%F INTO_2022_204_a15
V. L. Khatskevich. Extremal properties of means of fuzzy random variables. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 160-169. http://geodesic.mathdoc.fr/item/INTO_2022_204_a15/