Extremal properties of means of fuzzy random variables
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 160-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine extremal properties of fuzzy expectations and expectations of fuzzy random variables. We introduce a new mean characteristic—a scalar random variable that characterizes a given fuzzy random variable—and prove its extremal properties. Also, we study linear regressions of fuzzy random variables, obtain a formula for the optimal linear fuzzy regression, and prove that its correlation with the predicted value is maximal.
Keywords: fuzzy random variable, mean value, extremal property.
@article{INTO_2022_204_a15,
     author = {V. L. Khatskevich},
     title = {Extremal properties of means of fuzzy random variables},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {160--169},
     publisher = {mathdoc},
     volume = {204},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_204_a15/}
}
TY  - JOUR
AU  - V. L. Khatskevich
TI  - Extremal properties of means of fuzzy random variables
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 160
EP  - 169
VL  - 204
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_204_a15/
LA  - ru
ID  - INTO_2022_204_a15
ER  - 
%0 Journal Article
%A V. L. Khatskevich
%T Extremal properties of means of fuzzy random variables
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 160-169
%V 204
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_204_a15/
%G ru
%F INTO_2022_204_a15
V. L. Khatskevich. Extremal properties of means of fuzzy random variables. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 160-169. http://geodesic.mathdoc.fr/item/INTO_2022_204_a15/

[1] Borisov V. V., Fedulov A. S., Zernov M. M., Osnovy nechetkoi arifmetiki, Goryachaya liniya-Telekom, M., 2019

[2] Veldyaksov V. N., Shvedov A. S., “O metode naimenshikh kvadratov pri regressii s nechetkimi dannymi”, Ekon. zh. VShE, 2014, no. 2, 328–344

[3] Gnedenko B. V., Kurs teorii veroyatnostei, Knizhnyi dom Librokom, M., 2011 | MR

[4] Dzhini K., Srednie velichiny, Statistika, M., 1970

[5] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, URSS, M., 2019 | MR

[6] Pegat A., Nechetkoe matematicheskoe modelirovanie i upravlenie, Binom. Laboratoriya znanii, M., 2015

[7] Shvedov A. S., “Otsenivanie srednikh i kovariatsii nechetko-sluchainykh velichin”, Prikl. ekonometrika., 42 (2016), 121–138

[8] Yazenin A. V., Osnovnye ponyatiya teorii vozmozhnostei: matematicheskii apparat dlya prinyatiya reshenii v usloviyakh gibridnoi neopredelennosti, Fizmatlit, M., 2016

[9] Bargiela A., Pedrycz W., Nakashima T., “Multiple regression with fuzzy data”, Fuzzy Sets Syst., 158 (2007), 2169–2188 | DOI | MR | Zbl

[10] Calvo T., Mesiar R., “Generalized median”, Fuzzy Sets Syst., 124 (2001), 59–61 | DOI | MR

[11] Colubi A., “Statistical inference about the means of fuzzy random variables: Applica analysis of fuzzy-and real-valued data”, Fuzzy Sets Syst., 160 (2009), 344–356 | DOI | MR | Zbl

[12] Dubois D., Prade H., “The mean value of fuzzy number”, Fuzzy Sets Syst., 24:3 (1987), 279–300 | DOI | MR | Zbl

[13] Feng Y., Hu L., Shu H., “The variance and covariance of fuzzy random variables”, Fuzzy Sets Syst., 120:3 (2001), 487–497 | DOI | MR | Zbl

[14] Fuller R., Majlender P., “On weighted possibilistic mean value and variance of fuzzy numbers”, Fuzzy Sets Syst., 136 (2003), 363–374 | DOI | MR | Zbl

[15] Khatskevich V. L., “On some class of nonlinear mean random values”, J. Phys. Conf. Ser., 1479 (2020), 012087 | DOI

[16] Kwakernaak H., “Fuzzy random variables. I. Definitions and theorems”, Inform. Sci., 15:1 (1978), 1–29 | DOI | MR | Zbl

[17] Nahmias S., “Fuzzy variables”, Fuzzy Sets Syst., 1 (1978), 97–110 | DOI | MR | Zbl

[18] Nguyen H. T., Wu B., Fundamentals of Statistics with Fuzzy Data, Springer-Verlag, Berlin, 2006 | Zbl

[19] Puri M. L., Ralesku D. A., “Fuzzy random variables”, J. Math. Anal. Appl., 114 (1986), 409–422 | DOI | MR | Zbl

[20] Shapiro A. F., “Fuzzy random variables”, Insur. Math. Econ., 44:2 (2009), 307–314 | DOI | MR | Zbl

[21] Wang D., “A note on constitency and unbiasedness of point estimation with fuzzy data”, Metrika. Int. J. Theor. Appl. Stat., 60:1, 93–104 | MR | Zbl