Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_204_a15, author = {V. L. Khatskevich}, title = {Extremal properties of means of fuzzy random variables}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {160--169}, publisher = {mathdoc}, volume = {204}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_204_a15/} }
TY - JOUR AU - V. L. Khatskevich TI - Extremal properties of means of fuzzy random variables JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 160 EP - 169 VL - 204 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_204_a15/ LA - ru ID - INTO_2022_204_a15 ER -
%0 Journal Article %A V. L. Khatskevich %T Extremal properties of means of fuzzy random variables %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 160-169 %V 204 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_204_a15/ %G ru %F INTO_2022_204_a15
V. L. Khatskevich. Extremal properties of means of fuzzy random variables. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 160-169. http://geodesic.mathdoc.fr/item/INTO_2022_204_a15/
[1] Borisov V. V., Fedulov A. S., Zernov M. M., Osnovy nechetkoi arifmetiki, Goryachaya liniya-Telekom, M., 2019
[2] Veldyaksov V. N., Shvedov A. S., “O metode naimenshikh kvadratov pri regressii s nechetkimi dannymi”, Ekon. zh. VShE, 2014, no. 2, 328–344
[3] Gnedenko B. V., Kurs teorii veroyatnostei, Knizhnyi dom Librokom, M., 2011 | MR
[4] Dzhini K., Srednie velichiny, Statistika, M., 1970
[5] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, URSS, M., 2019 | MR
[6] Pegat A., Nechetkoe matematicheskoe modelirovanie i upravlenie, Binom. Laboratoriya znanii, M., 2015
[7] Shvedov A. S., “Otsenivanie srednikh i kovariatsii nechetko-sluchainykh velichin”, Prikl. ekonometrika., 42 (2016), 121–138
[8] Yazenin A. V., Osnovnye ponyatiya teorii vozmozhnostei: matematicheskii apparat dlya prinyatiya reshenii v usloviyakh gibridnoi neopredelennosti, Fizmatlit, M., 2016
[9] Bargiela A., Pedrycz W., Nakashima T., “Multiple regression with fuzzy data”, Fuzzy Sets Syst., 158 (2007), 2169–2188 | DOI | MR | Zbl
[10] Calvo T., Mesiar R., “Generalized median”, Fuzzy Sets Syst., 124 (2001), 59–61 | DOI | MR
[11] Colubi A., “Statistical inference about the means of fuzzy random variables: Applica analysis of fuzzy-and real-valued data”, Fuzzy Sets Syst., 160 (2009), 344–356 | DOI | MR | Zbl
[12] Dubois D., Prade H., “The mean value of fuzzy number”, Fuzzy Sets Syst., 24:3 (1987), 279–300 | DOI | MR | Zbl
[13] Feng Y., Hu L., Shu H., “The variance and covariance of fuzzy random variables”, Fuzzy Sets Syst., 120:3 (2001), 487–497 | DOI | MR | Zbl
[14] Fuller R., Majlender P., “On weighted possibilistic mean value and variance of fuzzy numbers”, Fuzzy Sets Syst., 136 (2003), 363–374 | DOI | MR | Zbl
[15] Khatskevich V. L., “On some class of nonlinear mean random values”, J. Phys. Conf. Ser., 1479 (2020), 012087 | DOI
[16] Kwakernaak H., “Fuzzy random variables. I. Definitions and theorems”, Inform. Sci., 15:1 (1978), 1–29 | DOI | MR | Zbl
[17] Nahmias S., “Fuzzy variables”, Fuzzy Sets Syst., 1 (1978), 97–110 | DOI | MR | Zbl
[18] Nguyen H. T., Wu B., Fundamentals of Statistics with Fuzzy Data, Springer-Verlag, Berlin, 2006 | Zbl
[19] Puri M. L., Ralesku D. A., “Fuzzy random variables”, J. Math. Anal. Appl., 114 (1986), 409–422 | DOI | MR | Zbl
[20] Shapiro A. F., “Fuzzy random variables”, Insur. Math. Econ., 44:2 (2009), 307–314 | DOI | MR | Zbl
[21] Wang D., “A note on constitency and unbiasedness of point estimation with fuzzy data”, Metrika. Int. J. Theor. Appl. Stat., 60:1, 93–104 | MR | Zbl