Solvability of a mixed problem for a hyperbolic equation with splitting boundary conditions in the case of incomplete system of eigenfunctions
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 124-134

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a mixed problem for a second-order hyperbolic equation with constant coefficients and a mixed partial derivative. We assume that the boundary conditions are splitted (i.e., one condition is posed at the left endpoint of the main interval and the other at the right endpoint) and the roots of the characteristic equation are simple and lie on the positive half-line. The coefficients of the equation and the boundary conditions are constrained by conditions that guarantee the absence of the two-fold completeness of eigenfunctions of the corresponding spectral problem for the differential quadratic pencil. Using the Poincaré–Cauchy contour integral method, we to obtain sufficient conditions for the solvability of this problem.
Keywords: mixed problem, hyperbolic equation, solvability of mixed problem, splitting boundary conditions, eigenfunctions, two-fold incompleteness, two-fold expansion, irregular operator pencil, differential pencil, contour integral method, Poincaré–Cauchy method.
Mots-clés : existence of solutions, constant coefficients
@article{INTO_2022_204_a12,
     author = {V. S. Rykhlov},
     title = {Solvability of a mixed problem for a hyperbolic equation with splitting boundary conditions in the case of incomplete system of eigenfunctions},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {124--134},
     publisher = {mathdoc},
     volume = {204},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_204_a12/}
}
TY  - JOUR
AU  - V. S. Rykhlov
TI  - Solvability of a mixed problem for a hyperbolic equation with splitting boundary conditions in the case of incomplete system of eigenfunctions
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 124
EP  - 134
VL  - 204
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_204_a12/
LA  - ru
ID  - INTO_2022_204_a12
ER  - 
%0 Journal Article
%A V. S. Rykhlov
%T Solvability of a mixed problem for a hyperbolic equation with splitting boundary conditions in the case of incomplete system of eigenfunctions
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 124-134
%V 204
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_204_a12/
%G ru
%F INTO_2022_204_a12
V. S. Rykhlov. Solvability of a mixed problem for a hyperbolic equation with splitting boundary conditions in the case of incomplete system of eigenfunctions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 124-134. http://geodesic.mathdoc.fr/item/INTO_2022_204_a12/