Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_204_a12, author = {V. S. Rykhlov}, title = {Solvability of a mixed problem for a hyperbolic equation with splitting boundary conditions in the case of incomplete system of eigenfunctions}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {124--134}, publisher = {mathdoc}, volume = {204}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_204_a12/} }
TY - JOUR AU - V. S. Rykhlov TI - Solvability of a mixed problem for a hyperbolic equation with splitting boundary conditions in the case of incomplete system of eigenfunctions JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 124 EP - 134 VL - 204 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_204_a12/ LA - ru ID - INTO_2022_204_a12 ER -
%0 Journal Article %A V. S. Rykhlov %T Solvability of a mixed problem for a hyperbolic equation with splitting boundary conditions in the case of incomplete system of eigenfunctions %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 124-134 %V 204 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_204_a12/ %G ru %F INTO_2022_204_a12
V. S. Rykhlov. Solvability of a mixed problem for a hyperbolic equation with splitting boundary conditions in the case of incomplete system of eigenfunctions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 124-134. http://geodesic.mathdoc.fr/item/INTO_2022_204_a12/
[1] Vagabov A. I., “Usloviya korrektnosti odnomernykh smeshannykh zadach dlya giperbolicheskikh sistem”, Dokl. AN SSSR., 155:6 (1964), 1247–1249 | Zbl
[2] Vagabov A. I., Vvedenie v spektralnuyu teoriyu differentsialnykh operatorov, Izd-vo Rostov. un-ta, Rostov-na-Donu, 1994
[3] Gurevich A. P., Khromov A. P., “Operatory differentsirovaniya pervogo i vtorogo poryadkov so znakoperemennoi vesovoi funktsiei”, Mat. zametki., 56:1 (1994), 3–15 | MR | Zbl
[4] Dmitriev O. Yu., “Razlozhenie po sobstvennym funktsiyam differentsialnogo operatora $n$-go poryadka s neregulyarnymi kraevymi usloviyami”, Izv. Saratov. un-ta. Nov. ser. Mat. Mekh. Inform., 7:2 (2007), 10–14
[5] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969
[6] Rasulov M. L., “Issledovanie vychetnogo metoda resheniya nekotorykh smeshannykh zadach dlya differentsialnykh uravnenii”, Mat. sb., 30 (72):3 (1952), 509–528 | Zbl
[7] Rasulov M. L., “Vychetnyi metod resheniya smeshannykh zadach dlya differentsialnykh uravnenii i formula razlozheniya proizvolnoi vektor-funktsii po fundamentalnym funktsiyam granichnoi zadachi s parametrom”, Mat. sb., 48 (90):3 (1959), 277–310 | Zbl
[8] Rasulov M. L., Metod konturnogo integrala i ego primenenie k issledovaniyu zadach dlya differentsialnykh uravnenii, Nauka, M., 1964
[9] Rykhlov V. S., “O polnote sobstvennykh funktsii kvadratichnykh puchkov obyknovennykh differentsialnykh operatorov”, Izv. vuzov. Mat., 1992, no. 3, 35–44 | MR | Zbl
[10] Rykhlov V. S., “O kratnoi nepolnote sobstvennykh funktsii puchkov obyknovennykh differentsialnykh operatorov”, Matematika. Mekhanika, v. 3, Izd-vo Saratov. un-ta, Saratov, 2001, 114–117
[11] Rykhlov V. S., “Razlozhenie po sobstvennym funktsiyam kvadratichnykh silno neregulyarnykh puchkov differentsialnykh operatorov vtorogo poryadka”, Izv. Saratov. un-ta. Nov. ser. Mat. Mekh. Inform., 13:1 (2013), 21–26 | MR | Zbl
[12] Rykhlov V. S., “O polnote kornevykh funktsii polinomialnykh puchkov obyknovennykh differentsialnykh operatorov s postoyannymi koeffitsientami”, Tavrich. vestn. inform. mat., 2015, no. 1 (26), 69–86
[13] Rykhlov V. S., “O razreshimosti smeshannoi zadachi dlya nekotorykh giperbolicheskikh uravnenii pri otsutstvii polnoty sobstvennykh funktsii”, Mat. Vseross. konf. «Voronezhskaya vesennyaya matematicheskaya shkola «Pontryaginskie chteniya-KhKhXI. Sovremennye metody teorii kraevykh zadach» (4–7 maya 2020 g., Voronezh), VGU, Voronezh, 2020, 184–187
[14] Tamarkin Ya. V., O nekotorykh obschikh zadachakh teorii obyknovennykh differentsialnykh uravnenii i razlozhenii proizvolnykh funktsii v ryady, Petrograd, 1917
[15] Khromov A. P., “Razlozhenie po sobstvennym funktsiyam odnoi kraevoi zadachi tretego poryadka”, Issledovaniya po teorii operatorov, Izd-vo BNTs UrO AN SSSR, Ufa, 1988, 182–193
[16] Khromov A. P., “O klassicheskom reshenii smeshannoi zadachi dlya odnorodnogo volnovogo uravneniya s zakreplennymi kontsami i nulevoi nachalnoi skorostyu”, Izv. Saratov. un-ta. Nov. ser. Mat. Mekh. Inform., 19:3 (2019), 280–288 | MR | Zbl
[17] Khromov A. P., Kornev V. V., “Klassicheskoe i obobschennoe reshenie smeshannoi zadachi dlya neodnorodnogo volnovogo uravneniya”, Dokl. RAN., 484:1 (2019), 18–20 | Zbl
[18] Shkalikov A. A., “Kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii s parametrom v granichnykh usloviyakh”, Tr. semin. im. I. G. Petrovskogo., 9 (1983), 190–229 | MR | Zbl
[19] Birkhoff G. D., “Boundary value and expansion problems of ordinary linear differential equations”, Trans. Am. Math. Soc., 9 (1908), 373–395 | DOI | MR | Zbl
[20] Cauchy A. L., Mémoire sur l'application du calcal des résidus a la solution des problêmes de physique mathématique, Paris, 1827
[21] Cauchy A. L., Oeuvres compleétes d'Augustin Cauchy (II Sér.). Tome VII, Paris, 1827 | MR
[22] Poincaré M. H., “Sur les équations de la physique mathḿatique”, Rend. Circ. Mat., 8 (1894), 57–155 | DOI
[23] Tamarkin J. D., “Some general problems of theory of ordinary linear differential equations and expansion of an arbitrary function in series of fundamental functions”, Math. Z., 27 (1927), 1–54 | DOI | MR | Zbl