Solvability of a mixed problem for a hyperbolic equation with splitting boundary conditions in the case of incomplete system of eigenfunctions
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 124-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a mixed problem for a second-order hyperbolic equation with constant coefficients and a mixed partial derivative. We assume that the boundary conditions are splitted (i.e., one condition is posed at the left endpoint of the main interval and the other at the right endpoint) and the roots of the characteristic equation are simple and lie on the positive half-line. The coefficients of the equation and the boundary conditions are constrained by conditions that guarantee the absence of the two-fold completeness of eigenfunctions of the corresponding spectral problem for the differential quadratic pencil. Using the Poincaré–Cauchy contour integral method, we to obtain sufficient conditions for the solvability of this problem.
Keywords: mixed problem, hyperbolic equation, solvability of mixed problem, splitting boundary conditions, eigenfunctions, two-fold incompleteness, two-fold expansion, irregular operator pencil, differential pencil, contour integral method, Poincaré–Cauchy method.
Mots-clés : existence of solutions, constant coefficients
@article{INTO_2022_204_a12,
     author = {V. S. Rykhlov},
     title = {Solvability of a mixed problem for a hyperbolic equation with splitting boundary conditions in the case of incomplete system of eigenfunctions},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {124--134},
     publisher = {mathdoc},
     volume = {204},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_204_a12/}
}
TY  - JOUR
AU  - V. S. Rykhlov
TI  - Solvability of a mixed problem for a hyperbolic equation with splitting boundary conditions in the case of incomplete system of eigenfunctions
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 124
EP  - 134
VL  - 204
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_204_a12/
LA  - ru
ID  - INTO_2022_204_a12
ER  - 
%0 Journal Article
%A V. S. Rykhlov
%T Solvability of a mixed problem for a hyperbolic equation with splitting boundary conditions in the case of incomplete system of eigenfunctions
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 124-134
%V 204
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_204_a12/
%G ru
%F INTO_2022_204_a12
V. S. Rykhlov. Solvability of a mixed problem for a hyperbolic equation with splitting boundary conditions in the case of incomplete system of eigenfunctions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 124-134. http://geodesic.mathdoc.fr/item/INTO_2022_204_a12/

[1] Vagabov A. I., “Usloviya korrektnosti odnomernykh smeshannykh zadach dlya giperbolicheskikh sistem”, Dokl. AN SSSR., 155:6 (1964), 1247–1249 | Zbl

[2] Vagabov A. I., Vvedenie v spektralnuyu teoriyu differentsialnykh operatorov, Izd-vo Rostov. un-ta, Rostov-na-Donu, 1994

[3] Gurevich A. P., Khromov A. P., “Operatory differentsirovaniya pervogo i vtorogo poryadkov so znakoperemennoi vesovoi funktsiei”, Mat. zametki., 56:1 (1994), 3–15 | MR | Zbl

[4] Dmitriev O. Yu., “Razlozhenie po sobstvennym funktsiyam differentsialnogo operatora $n$-go poryadka s neregulyarnymi kraevymi usloviyami”, Izv. Saratov. un-ta. Nov. ser. Mat. Mekh. Inform., 7:2 (2007), 10–14

[5] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969

[6] Rasulov M. L., “Issledovanie vychetnogo metoda resheniya nekotorykh smeshannykh zadach dlya differentsialnykh uravnenii”, Mat. sb., 30 (72):3 (1952), 509–528 | Zbl

[7] Rasulov M. L., “Vychetnyi metod resheniya smeshannykh zadach dlya differentsialnykh uravnenii i formula razlozheniya proizvolnoi vektor-funktsii po fundamentalnym funktsiyam granichnoi zadachi s parametrom”, Mat. sb., 48 (90):3 (1959), 277–310 | Zbl

[8] Rasulov M. L., Metod konturnogo integrala i ego primenenie k issledovaniyu zadach dlya differentsialnykh uravnenii, Nauka, M., 1964

[9] Rykhlov V. S., “O polnote sobstvennykh funktsii kvadratichnykh puchkov obyknovennykh differentsialnykh operatorov”, Izv. vuzov. Mat., 1992, no. 3, 35–44 | MR | Zbl

[10] Rykhlov V. S., “O kratnoi nepolnote sobstvennykh funktsii puchkov obyknovennykh differentsialnykh operatorov”, Matematika. Mekhanika, v. 3, Izd-vo Saratov. un-ta, Saratov, 2001, 114–117

[11] Rykhlov V. S., “Razlozhenie po sobstvennym funktsiyam kvadratichnykh silno neregulyarnykh puchkov differentsialnykh operatorov vtorogo poryadka”, Izv. Saratov. un-ta. Nov. ser. Mat. Mekh. Inform., 13:1 (2013), 21–26 | MR | Zbl

[12] Rykhlov V. S., “O polnote kornevykh funktsii polinomialnykh puchkov obyknovennykh differentsialnykh operatorov s postoyannymi koeffitsientami”, Tavrich. vestn. inform. mat., 2015, no. 1 (26), 69–86

[13] Rykhlov V. S., “O razreshimosti smeshannoi zadachi dlya nekotorykh giperbolicheskikh uravnenii pri otsutstvii polnoty sobstvennykh funktsii”, Mat. Vseross. konf. «Voronezhskaya vesennyaya matematicheskaya shkola «Pontryaginskie chteniya-KhKhXI. Sovremennye metody teorii kraevykh zadach» (4–7 maya 2020 g., Voronezh), VGU, Voronezh, 2020, 184–187

[14] Tamarkin Ya. V., O nekotorykh obschikh zadachakh teorii obyknovennykh differentsialnykh uravnenii i razlozhenii proizvolnykh funktsii v ryady, Petrograd, 1917

[15] Khromov A. P., “Razlozhenie po sobstvennym funktsiyam odnoi kraevoi zadachi tretego poryadka”, Issledovaniya po teorii operatorov, Izd-vo BNTs UrO AN SSSR, Ufa, 1988, 182–193

[16] Khromov A. P., “O klassicheskom reshenii smeshannoi zadachi dlya odnorodnogo volnovogo uravneniya s zakreplennymi kontsami i nulevoi nachalnoi skorostyu”, Izv. Saratov. un-ta. Nov. ser. Mat. Mekh. Inform., 19:3 (2019), 280–288 | MR | Zbl

[17] Khromov A. P., Kornev V. V., “Klassicheskoe i obobschennoe reshenie smeshannoi zadachi dlya neodnorodnogo volnovogo uravneniya”, Dokl. RAN., 484:1 (2019), 18–20 | Zbl

[18] Shkalikov A. A., “Kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii s parametrom v granichnykh usloviyakh”, Tr. semin. im. I. G. Petrovskogo., 9 (1983), 190–229 | MR | Zbl

[19] Birkhoff G. D., “Boundary value and expansion problems of ordinary linear differential equations”, Trans. Am. Math. Soc., 9 (1908), 373–395 | DOI | MR | Zbl

[20] Cauchy A. L., Mémoire sur l'application du calcal des résidus a la solution des problêmes de physique mathématique, Paris, 1827

[21] Cauchy A. L., Oeuvres compleétes d'Augustin Cauchy (II Sér.). Tome VII, Paris, 1827 | MR

[22] Poincaré M. H., “Sur les équations de la physique mathḿatique”, Rend. Circ. Mat., 8 (1894), 57–155 | DOI

[23] Tamarkin J. D., “Some general problems of theory of ordinary linear differential equations and expansion of an arbitrary function in series of fundamental functions”, Math. Z., 27 (1927), 1–54 | DOI | MR | Zbl