Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_204_a11, author = {M. V. Polovinkina and I. P. Polovinkin}, title = {On sufficient conditions for the stability of a stationary solution and on one effect in diffusion models of oncological processes}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {115--123}, publisher = {mathdoc}, volume = {204}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_204_a11/} }
TY - JOUR AU - M. V. Polovinkina AU - I. P. Polovinkin TI - On sufficient conditions for the stability of a stationary solution and on one effect in diffusion models of oncological processes JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 115 EP - 123 VL - 204 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_204_a11/ LA - ru ID - INTO_2022_204_a11 ER -
%0 Journal Article %A M. V. Polovinkina %A I. P. Polovinkin %T On sufficient conditions for the stability of a stationary solution and on one effect in diffusion models of oncological processes %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 115-123 %V 204 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_204_a11/ %G ru %F INTO_2022_204_a11
M. V. Polovinkina; I. P. Polovinkin. On sufficient conditions for the stability of a stationary solution and on one effect in diffusion models of oncological processes. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 115-123. http://geodesic.mathdoc.fr/item/INTO_2022_204_a11/