Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2022_204_a11, author = {M. V. Polovinkina and I. P. Polovinkin}, title = {On sufficient conditions for the stability of a stationary solution and on one effect in diffusion models of oncological processes}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {115--123}, publisher = {mathdoc}, volume = {204}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2022_204_a11/} }
TY - JOUR AU - M. V. Polovinkina AU - I. P. Polovinkin TI - On sufficient conditions for the stability of a stationary solution and on one effect in diffusion models of oncological processes JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2022 SP - 115 EP - 123 VL - 204 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2022_204_a11/ LA - ru ID - INTO_2022_204_a11 ER -
%0 Journal Article %A M. V. Polovinkina %A I. P. Polovinkin %T On sufficient conditions for the stability of a stationary solution and on one effect in diffusion models of oncological processes %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2022 %P 115-123 %V 204 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2022_204_a11/ %G ru %F INTO_2022_204_a11
M. V. Polovinkina; I. P. Polovinkin. On sufficient conditions for the stability of a stationary solution and on one effect in diffusion models of oncological processes. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 115-123. http://geodesic.mathdoc.fr/item/INTO_2022_204_a11/
[1] Zhukova I. V., Kolpak E. P., “Matematicheskie modeli zlokachestvennoi opukholi”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. mat. Inform. Prots. upr., 2014, no. 3, 5–18
[2] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[3] Meshkov V. Z., Polovinkin I. P., Semenov M. E., “Ob ustoichivosti statsionarnogo resheniya uravneniya Khotellinga”, Obozr. prikl. promyshl. mat., 9:1 (2002), 226 – 227
[4] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976
[5] Friedrichs K. O., Spectral Theory of Operators in Hilbert Space, Springer-Verlag, New York–Heidelberg–Berlin, 1973 | MR | Zbl
[6] Puu T., Nonlinear Economic Dynamics, Berlin, 1997 | MR | Zbl
[7] Rektorys K., Variational Methods in Mathematics, Science and Engineering, Springer Science+Business Media, 2012 | MR
[8] Swanson K. R., Rostomily R. C., Alvord E. C., “A mathematical modeling tool for predicting survival of individual patients following resection of glioblastoma: a proof of principle”, British J. Cancer., 98:1, 113–119 | DOI | MR
[9] Yin A. Moes D. J., Van Hasselt C., Swen J. Guchelaar H.-J., “A review of mathematical models for tumor dynamics and treatment resistance evolution of solid tumors”, CPT: Pharmacometrics Systems Pharmacology., 8 (2019), 720–737 | DOI