On sufficient conditions for the stability of a stationary solution and on one effect in diffusion models of oncological processes
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 115-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions for the stability of the stationary solution in the population diffusion model of tumor growth and in the model of the immune response are established. An effect is revealed that is inherent only in the diffusion model, in contrast to the point model: the trivial solution may turn out to be stable depending on the size of the domain considered.
Keywords: system with distributed parameters, population diffusion model of tumor growth, stability of stationary solution.
Mots-clés : immune response model
@article{INTO_2022_204_a11,
     author = {M. V. Polovinkina and I. P. Polovinkin},
     title = {On sufficient conditions for the stability of a stationary solution and on one effect in diffusion models of oncological processes},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {115--123},
     publisher = {mathdoc},
     volume = {204},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_204_a11/}
}
TY  - JOUR
AU  - M. V. Polovinkina
AU  - I. P. Polovinkin
TI  - On sufficient conditions for the stability of a stationary solution and on one effect in diffusion models of oncological processes
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 115
EP  - 123
VL  - 204
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_204_a11/
LA  - ru
ID  - INTO_2022_204_a11
ER  - 
%0 Journal Article
%A M. V. Polovinkina
%A I. P. Polovinkin
%T On sufficient conditions for the stability of a stationary solution and on one effect in diffusion models of oncological processes
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 115-123
%V 204
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_204_a11/
%G ru
%F INTO_2022_204_a11
M. V. Polovinkina; I. P. Polovinkin. On sufficient conditions for the stability of a stationary solution and on one effect in diffusion models of oncological processes. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 115-123. http://geodesic.mathdoc.fr/item/INTO_2022_204_a11/

[1] Zhukova I. V., Kolpak E. P., “Matematicheskie modeli zlokachestvennoi opukholi”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. mat. Inform. Prots. upr., 2014, no. 3, 5–18

[2] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[3] Meshkov V. Z., Polovinkin I. P., Semenov M. E., “Ob ustoichivosti statsionarnogo resheniya uravneniya Khotellinga”, Obozr. prikl. promyshl. mat., 9:1 (2002), 226 – 227

[4] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976

[5] Friedrichs K. O., Spectral Theory of Operators in Hilbert Space, Springer-Verlag, New York–Heidelberg–Berlin, 1973 | MR | Zbl

[6] Puu T., Nonlinear Economic Dynamics, Berlin, 1997 | MR | Zbl

[7] Rektorys K., Variational Methods in Mathematics, Science and Engineering, Springer Science+Business Media, 2012 | MR

[8] Swanson K. R., Rostomily R. C., Alvord E. C., “A mathematical modeling tool for predicting survival of individual patients following resection of glioblastoma: a proof of principle”, British J. Cancer., 98:1, 113–119 | DOI | MR

[9] Yin A. Moes D. J., Van Hasselt C., Swen J. Guchelaar H.-J., “A review of mathematical models for tumor dynamics and treatment resistance evolution of solid tumors”, CPT: Pharmacometrics Systems Pharmacology., 8 (2019), 720–737 | DOI