Multi-step methods for the numerical solution of integro-algebraic equations with two singularities in the kernel
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 104-114

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a class of Volterra integro-algebraic equations with two integrable power singularities in the kernel and indicate fundamental difficulties in studying such equations. In terms of matrix pencils, we formulate sufficient conditions for the existence of a unique continuous solution. Also, we propose multi-step methods for solving such equations based on the method of integrating products and Adams quadrature formulas and present the results of numerical experiments.
Keywords: Volterra integro-algebraic equation; multi-step method; boundary singularity; diagonal singularity; rank-degree criterion.
@article{INTO_2022_204_a10,
     author = {S. S. Orlov and O. S. Budnikova and M. N. Botoroeva},
     title = {Multi-step methods for the numerical solution of integro-algebraic equations with two singularities in the kernel},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {104--114},
     publisher = {mathdoc},
     volume = {204},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_204_a10/}
}
TY  - JOUR
AU  - S. S. Orlov
AU  - O. S. Budnikova
AU  - M. N. Botoroeva
TI  - Multi-step methods for the numerical solution of integro-algebraic equations with two singularities in the kernel
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 104
EP  - 114
VL  - 204
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_204_a10/
LA  - ru
ID  - INTO_2022_204_a10
ER  - 
%0 Journal Article
%A S. S. Orlov
%A O. S. Budnikova
%A M. N. Botoroeva
%T Multi-step methods for the numerical solution of integro-algebraic equations with two singularities in the kernel
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 104-114
%V 204
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_204_a10/
%G ru
%F INTO_2022_204_a10
S. S. Orlov; O. S. Budnikova; M. N. Botoroeva. Multi-step methods for the numerical solution of integro-algebraic equations with two singularities in the kernel. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 104-114. http://geodesic.mathdoc.fr/item/INTO_2022_204_a10/