Multi-step methods for the numerical solution of integro-algebraic equations with two singularities in the kernel
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 104-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a class of Volterra integro-algebraic equations with two integrable power singularities in the kernel and indicate fundamental difficulties in studying such equations. In terms of matrix pencils, we formulate sufficient conditions for the existence of a unique continuous solution. Also, we propose multi-step methods for solving such equations based on the method of integrating products and Adams quadrature formulas and present the results of numerical experiments.
Keywords: Volterra integro-algebraic equation; multi-step method; boundary singularity; diagonal singularity; rank-degree criterion.
@article{INTO_2022_204_a10,
     author = {S. S. Orlov and O. S. Budnikova and M. N. Botoroeva},
     title = {Multi-step methods for the numerical solution of integro-algebraic equations with two singularities in the kernel},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {104--114},
     publisher = {mathdoc},
     volume = {204},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_204_a10/}
}
TY  - JOUR
AU  - S. S. Orlov
AU  - O. S. Budnikova
AU  - M. N. Botoroeva
TI  - Multi-step methods for the numerical solution of integro-algebraic equations with two singularities in the kernel
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 104
EP  - 114
VL  - 204
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_204_a10/
LA  - ru
ID  - INTO_2022_204_a10
ER  - 
%0 Journal Article
%A S. S. Orlov
%A O. S. Budnikova
%A M. N. Botoroeva
%T Multi-step methods for the numerical solution of integro-algebraic equations with two singularities in the kernel
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 104-114
%V 204
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_204_a10/
%G ru
%F INTO_2022_204_a10
S. S. Orlov; O. S. Budnikova; M. N. Botoroeva. Multi-step methods for the numerical solution of integro-algebraic equations with two singularities in the kernel. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 104-114. http://geodesic.mathdoc.fr/item/INTO_2022_204_a10/

[1] Ambartsumov S. B., Bulatov M. V., Li M. G., Chistyakov V. F., “Differentsialno-algebraicheskie uravneniya i ikh prilozheniya”, Tr. Srednevolzh. mat. o-va., 9:1 (2007), 62–69 | Zbl

[2] Budnikova O. S., Bulatov M. V., “Chislennoe reshenie integro-algebraicheskikh uravnenii mnogoshagovymi metodami”, Zh. vychisl. mat. mat. fiz., 52:5 (2012), 829–839 | MR | Zbl

[3] Bulatov M. V., Budnikova O. S., “Ob ustoichivykh algoritmakh chislennogo resheniya integro-algebraicheskikh uravnenii”, Vestn. Yuzhno-Ural. gos. un-ta. Ser Matem. model. programm., 6:4 (2013), 5–14 | Zbl

[4] Bulatov M. V., Budnikova O. S., “Chislennoe reshenie integro-algebraicheskikh uravnenii so slaboi osobennostyu v yadre $k$-shagovymi metodami”, Izv. Irkut. un-ta. Ser. Mat., 13 (2015), 3–15. | Zbl

[5] Nikolaev V. V., Cherevko A. A., Chupakhin A. P., “Modelirovanie gemodinamiki v seti sosudov, osnovannykh na differentsialno-algebraicheskikh uravneniyakh, postroennykh po klinicheskim dannym”, Tez. dokl. Vseross. konf. «Novye matematicheskie modeli mekhaniki sploshnykh sred: postroenie i izuchenie», Institut gidrodinamiki im. M. A. Lavrenteva SO RAN, Novosibirsk, 2014, 106

[6] Ten Men Yan., Priblizhennoe reshenie lineinykh integralnykh uravnenii Volterra I roda, diss. na soisk. uch. step. kand. fiz.-mat. nauk, Irkutsk, 1985

[7] Chistyakov V. F., “O singulyarnykh sistemakh obyknovennykh differentsialnykh uravnenii i ikh integralnykh analogakh”, Funktsii Lyapunova i ikh primeneniya, Nauka, Novosibirsk, 1987, 231–239

[8] Chistyakov V. F., “O razreshimosti lineinykh integro-algebraicheskikh uravnenii i chislennykh metodakh ikh resheniya”, Sib. mat. zh., 54:4 (2013), 932–946 | MR | Zbl

[9] Auzinger W., Lehner H., Weinmüller E., “An efficient asymptotically correct error estimator for collocation solutions to singular index-1 DAEs”, BIT Numer. Math., 51:1 (2011), 43–65 | DOI | MR | Zbl

[10] Brunner H., Volterra Integral Equations: An Introduction to Theory and Applications, Cambridge Univ. Press, Cambridge, 2017 | MR | Zbl

[11] Brunner H., Bulatov M. V., “On singular systems of integral equations with weakly singular kernels”, Proc. 11 Baikal Int. School-Seminar “Optimization Methods and Their Applications”, Irkutsk, 1998, 64–67

[12] Bulatov M. V., Hadizadeh M., Chistyakova E. V., “Construction of implicit multistep methods for solving integral algebraic equations”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. mat. Inform. Prots. upr., 15:3 (2019), 310–322 | MR

[13] Bulatov M. V., Lima P. M., Weinmüller E. B., “Existence and uniqueness of solutions to weakly singular integral-algebraic and integro-differential equations”, Central Eur. J. Math., 12:2 (2014), 308–321 | MR | Zbl

[14] Chistyakova E. V., Chistyakov V. F., Levin A. A., “Linearization of differential algebraic equations with integral terms and their application to the thermal energy modelling”, Vestn. Yuzhno-Ural. un-ta. Ser. Mat. model. program., 11:4 (2018), 94–109 | Zbl

[15] Hadizadeh M., Ghoreishi F., Pishbin S., “Jacobi spectral solution for integral algebraic equations of index 2”, Appl. Numer. Math., 61:1 (2011), 131–148 | DOI | MR | Zbl

[16] Kolk M., Pedas A., “Numerical solution of Volterra integral equations with weakly singular kernels which may have a boundary singularity”, Math. Model. Anal., 14:1 (2009), 79–89 | DOI | MR | Zbl

[17] Linz P., Analytical and Numerical Methods for Volterra Equations, SIAM, Philadelphia, 1985 | MR | Zbl

[18] Weiss R., Anderssen R. S., “A product integration methods for a class of singular first kind Volterra equations”, Numer. Math., 18:5 (1972), 442–456 | DOI | MR | Zbl