Method of similar operators in the problem of bi-invariant subspaces
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss the construction of bi-invariant subspaces for a self-adjoint, linear, closed operator with discrete spectrum perturbed by a bounded operator. The main result is the theorem on the similarity of this operator to a block diagonal operator. This theorem implies results concerning biinvariant subspaces and formulas for projectors and weighted average eigenvalues. In addition, we construct the corresponding group of operators and propose a new modification of the method of similar operators.
Keywords: method of similar operators, spectral projectors
Mots-clés : biinvariant subspaces.
@article{INTO_2022_204_a0,
     author = {A. G. Baskakov and G. V. Garkavenko and I. A. Krishtal and N. B. Uskova},
     title = {Method of similar operators in the problem of bi-invariant subspaces},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {204},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2022_204_a0/}
}
TY  - JOUR
AU  - A. G. Baskakov
AU  - G. V. Garkavenko
AU  - I. A. Krishtal
AU  - N. B. Uskova
TI  - Method of similar operators in the problem of bi-invariant subspaces
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2022
SP  - 3
EP  - 15
VL  - 204
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2022_204_a0/
LA  - ru
ID  - INTO_2022_204_a0
ER  - 
%0 Journal Article
%A A. G. Baskakov
%A G. V. Garkavenko
%A I. A. Krishtal
%A N. B. Uskova
%T Method of similar operators in the problem of bi-invariant subspaces
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2022
%P 3-15
%V 204
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2022_204_a0/
%G ru
%F INTO_2022_204_a0
A. G. Baskakov; G. V. Garkavenko; I. A. Krishtal; N. B. Uskova. Method of similar operators in the problem of bi-invariant subspaces. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school "Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI". Voronezh, May 3-9, 2020, Tome 204 (2022), pp. 3-15. http://geodesic.mathdoc.fr/item/INTO_2022_204_a0/

[1] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[2] Baskakov A. G., Garmonicheskii analiz lineinykh operatorov, Izd-vo VGU, Voronezh, 1987 | MR

[3] Baskakov A. G., “Metody abstraktnogo garmonicheskogo analiza v teorii vozmuschenii lineinykh operatorov”, Sib. mat. zh., 24:1 (1983), 21–39 | MR

[4] Baskakov A. G., Derbushev A. V., Scherbakov A. O., “Metod podobnykh operatorov v spektralnom analize nesamosopryazhennogo operatora Diraka s negladkim potentsialom”, Izv. RAN. Ser. mat., 75:3 (2011), 3–28 | MR | Zbl

[5] Baskakov A. G., Polyakov D. M., “Metod podobnykh operatorov v spektralnom analize operatora Khilla s negladkim potentsialom”, Mat. sb., 208:1 (2017), 3–47 | MR | Zbl

[6] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965

[7] Katrakhov V. V., Sitnik S. M., “Metod operatorov preobrazovaniya i kraevye zadachi dlya singulyarnykh ellipticheskikh uravnenii”, Sovr. mat. Fundam. napravl., 64:2 (2018), 211–426 | MR

[8] Levitan B. M., “Ob odnom obobschenii neravenstv S.N. Bernshteina i H. Bohr'a”, Dokl. AN SSSR., 15 (1937), 17–19

[9] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR

[10] Sitnik S. M., Shishkina E. L., Metod operatorov preobrazovaniya dlya differentsialnykh uravnenii s operatorom Besselya, Fizmatlit, M., 2019

[11] Fage M. N., “Spryamlenie bazisov v gilbertovom prostranstve”, Dokl. AN SSSR., 74:6 (1950), 1053–1056 | Zbl

[12] Baskakov A. G., Krishtal I. A., Uskova N. B., “Similarity techniques in the spectral analysis of perturbed operator matrices”, J. Math. Anal. Appl., 477 (2019), 930–960 | DOI | MR | Zbl

[13] Favard J., “Application de la formule sommatoire d'Euler á la démonstration de quelques propriétés extrémales des intégrales des fonctions périodiques ou presque périodiques”, Mat. Tidskrift København, B. H., 4 (1936), 81–94

[14] Foias C., Jung I., Ko E., Pearcy C., “On rank-one perturbation of normal operators”, J. Funct. Anal., 253 (2007), 628–646 | DOI | MR | Zbl

[15] Foias C., Jung I., Ko E., Pearcy C., “On rank-one perturbation of normal operators, II”, Indiana Univ. Math. J., 57 (2008), 2745–2760 | DOI | MR | Zbl

[16] Foias C., Jung I., Ko E., Pearcy C., “Spectral decomposability of rank-one perturbation of normal operators”, J. Math. Anal. Appl., 375 (2011), 602–609 | DOI | MR | Zbl

[17] Lukacs E., Characteristic Functions, Hather Publ., New York, 1970 | MR