Left-invariant contact metric structures and connections on Thurston group manifolds
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Tome 203 (2021), pp. 62-70
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is a review of results concerning the existence of left-invariant contact metric structures and connections on the Thurston group manifolds $Nil$ and $Sol$. The concept of a linear connection consistent with a distribution is introduced.
Keywords:
contact structure, metric, connection
Mots-clés : Lie group.
Mots-clés : Lie group.
@article{INTO_2021_203_a5,
author = {V. I. Panzhenskii and O. P. Surina},
title = {Left-invariant contact metric structures and connections on {Thurston} group manifolds},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {62--70},
publisher = {mathdoc},
volume = {203},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2021_203_a5/}
}
TY - JOUR AU - V. I. Panzhenskii AU - O. P. Surina TI - Left-invariant contact metric structures and connections on Thurston group manifolds JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 62 EP - 70 VL - 203 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_203_a5/ LA - ru ID - INTO_2021_203_a5 ER -
%0 Journal Article %A V. I. Panzhenskii %A O. P. Surina %T Left-invariant contact metric structures and connections on Thurston group manifolds %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 62-70 %V 203 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_203_a5/ %G ru %F INTO_2021_203_a5
V. I. Panzhenskii; O. P. Surina. Left-invariant contact metric structures and connections on Thurston group manifolds. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Tome 203 (2021), pp. 62-70. http://geodesic.mathdoc.fr/item/INTO_2021_203_a5/