Left-invariant contact metric structures and connections on Thurston group manifolds
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Tome 203 (2021), pp. 62-70

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a review of results concerning the existence of left-invariant contact metric structures and connections on the Thurston group manifolds $Nil$ and $Sol$. The concept of a linear connection consistent with a distribution is introduced.
Keywords: contact structure, metric, connection
Mots-clés : Lie group.
@article{INTO_2021_203_a5,
     author = {V. I. Panzhenskii and O. P. Surina},
     title = {Left-invariant contact metric structures and connections on {Thurston} group manifolds},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {62--70},
     publisher = {mathdoc},
     volume = {203},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_203_a5/}
}
TY  - JOUR
AU  - V. I. Panzhenskii
AU  - O. P. Surina
TI  - Left-invariant contact metric structures and connections on Thurston group manifolds
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 62
EP  - 70
VL  - 203
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_203_a5/
LA  - ru
ID  - INTO_2021_203_a5
ER  - 
%0 Journal Article
%A V. I. Panzhenskii
%A O. P. Surina
%T Left-invariant contact metric structures and connections on Thurston group manifolds
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 62-70
%V 203
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_203_a5/
%G ru
%F INTO_2021_203_a5
V. I. Panzhenskii; O. P. Surina. Left-invariant contact metric structures and connections on Thurston group manifolds. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Tome 203 (2021), pp. 62-70. http://geodesic.mathdoc.fr/item/INTO_2021_203_a5/