Left-invariant contact metric structures and connections on Thurston group manifolds
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Tome 203 (2021), pp. 62-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a review of results concerning the existence of left-invariant contact metric structures and connections on the Thurston group manifolds $Nil$ and $Sol$. The concept of a linear connection consistent with a distribution is introduced.
Keywords: contact structure, metric, connection
Mots-clés : Lie group.
@article{INTO_2021_203_a5,
     author = {V. I. Panzhenskii and O. P. Surina},
     title = {Left-invariant contact metric structures and connections on {Thurston} group manifolds},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {62--70},
     publisher = {mathdoc},
     volume = {203},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_203_a5/}
}
TY  - JOUR
AU  - V. I. Panzhenskii
AU  - O. P. Surina
TI  - Left-invariant contact metric structures and connections on Thurston group manifolds
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 62
EP  - 70
VL  - 203
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_203_a5/
LA  - ru
ID  - INTO_2021_203_a5
ER  - 
%0 Journal Article
%A V. I. Panzhenskii
%A O. P. Surina
%T Left-invariant contact metric structures and connections on Thurston group manifolds
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 62-70
%V 203
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_203_a5/
%G ru
%F INTO_2021_203_a5
V. I. Panzhenskii; O. P. Surina. Left-invariant contact metric structures and connections on Thurston group manifolds. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Tome 203 (2021), pp. 62-70. http://geodesic.mathdoc.fr/item/INTO_2021_203_a5/

[1] Agrachev A. A., “Nekotorye voprosy subrimanovoi geometrii”, Usp. mat. nauk., 71:6 (2016), 3–36 | MR | Zbl

[2] Vershik A. M., Gershkovich V. Ya., “Negolonomnye dinamicheskie sistemy. Geometriya raspredelenii i variatsionnye zadachi”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napr., 16 (1987), 5–85 | Zbl

[3] Vershik A. M., Fadeev L. D., “Lagranzheva mekhanika v invariantnom izlozhenii”, Problemy teoreticheskoi fiziki, Izd-vo LGU, L, 1975, 129–141

[4] Gorbatsevich V. V., “Subrimanovy geometrii na kompaktnykh odnorodnykh prostranstvakh”, Izv. RAN. Ser. mat., 78:3 (2014), 35–52 | MR | Zbl

[5] Kirichenko V. F., Differentsialno-geometricheskie struktury na mnogoobraziyakh, Pechatnyi Dom, Odessa, 2013

[6] Panzhenskii V. I., Klimova T. R., “Kontaktnaya metricheskaya svyaznost na gruppe Geizenberga”, Izv. vuzov. Mat., 2018, no. 11, 51–59

[7] Panzhenskii V. I., Klimova T. R., “Kontaktnaya metricheskaya svyaznost s kososimmetricheskim krucheniem”, Izv. vuzov. Mat., 2019, no. 11, 54–63

[8] Panzhenskii V. I., Novichkova A. S., “Otsenka sektsionnoi krivizny mnogoobraziya Sol”, Mat. Vseros. nauch. konf. «Pedagogicheskii institut im. V. G. Belinskogo: traditsii i innovatsii» (Penza, 12 dekabrya 2019 g.), Penza, 2019, 231–234

[9] Panzhenskii V. I., Rastrepina A. O., “Levoinvariantnaya kontaktnaya metricheskaya struktura na mnogoobrazii Sol”, Uch. zap. Kazan. un-ta. Ser. Fiz.-mat. nauki., 162:1 (2020), 77–90 | MR

[10] Panzhenskii V. I., Surina O. P., “Subrimanovy geodezicheskie na mnogomernoi gruppe Geizenberga”, Itogi nauki i tekhniki. Sovr. mat. prilozh. Temat. obz., 180 (2020), 74–84

[11] Sachkov Yu. L., “Teoriya upravleniya na gruppakh Li”, Sovr. mat. Fundam. napr., 26 (2007), 5–59

[12] Skott P., Geometrii na trekhmernykh mnogoobraziyakh, Mir, M., 1986

[13] Smolentsev N. K., “Levoinvariantnye para-sasakievy strutkury na gruppakh Li”, Vestn. Tomsk. gos. un-ta. Mat. mekh., 62:3 (2019), 27–37

[14] Agrachev A., Barilari D., Boscain U., Introduction to Riemannian and Sub-Riemannian Geometry, SISSA, Trieste, Italy, 2012 | MR

[15] Binz E., Pods S., The Geometry of Heisenberg Group, Am. Math. Soc., Providence, Rhode Island, 2008 | MR

[16] Blair D. E., Contact Manifolds in Riemannian Geometry, Springer-Verlag, Berlin–New York, 1976 | MR | Zbl

[17] Boyer C. P., “The Sasakian geometry of the Heisenberg group”, Bull. Math. Soc. Sci. Math. Roumanie., 52:3 (2009), 251–262 | MR | Zbl

[18] Diatta A., “Left invariant contact structures on Lie groups”, Diff. Geom. Appl., 26 (2008), 544–552 | DOI | MR | Zbl

[19] Gallier J., Quaintance J., Differential Geometry and Lie Groups: a Second Course: Geometry and Computing, Switzerland, 2020 | MR

[20] Gonzalez J. C., Chinea D., “Quasi-Sasakian homogeneous structures on the generalized Heisenberg group $H(p,1)$”, Proc. Am. Math. Soc., 105:1 (1989), 173–184 | MR | Zbl

[21] Gordeeva I. A., Pan'zhenskii V. I., Stepanov S. E., “Riemann–Cartan manifolds”, J. Math. Sci., 169:3 (2010), 342–361 | DOI | Zbl

[22] Goze M., Remm E., “Contact and Frobeniusian forms on Lie groups”, Differ. Geom. Appl., 35 (2014), 74–94 | DOI | MR | Zbl

[23] Tanno S., “The automorphism groups of almost contact Riemannian manifolds”, Tôhoku Math. J. (2)., 21:1 (1969), 21–38 | DOI | MR | Zbl

[24] Thurston W. P., The Geometry and Topology of Three-Manifold, Princeton Univ. Press, Princeton, 1997 | MR