Mots-clés : stable invariant torus, cascade of bifurcations
@article{INTO_2021_203_a3,
author = {A. N. Kulikov and D. A. Kulikov},
title = {On the possibility of implementing the {Landau{\textendash}Hopf} scenario of transition to turbulence in the generalized model {\textquotedblleft}multiplier-accelerator{\textquotedblright}},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {39--49},
year = {2021},
volume = {203},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2021_203_a3/}
}
TY - JOUR AU - A. N. Kulikov AU - D. A. Kulikov TI - On the possibility of implementing the Landau–Hopf scenario of transition to turbulence in the generalized model “multiplier-accelerator” JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 39 EP - 49 VL - 203 UR - http://geodesic.mathdoc.fr/item/INTO_2021_203_a3/ LA - ru ID - INTO_2021_203_a3 ER -
%0 Journal Article %A A. N. Kulikov %A D. A. Kulikov %T On the possibility of implementing the Landau–Hopf scenario of transition to turbulence in the generalized model “multiplier-accelerator” %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 39-49 %V 203 %U http://geodesic.mathdoc.fr/item/INTO_2021_203_a3/ %G ru %F INTO_2021_203_a3
A. N. Kulikov; D. A. Kulikov. On the possibility of implementing the Landau–Hopf scenario of transition to turbulence in the generalized model “multiplier-accelerator”. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Tome 203 (2021), pp. 39-49. http://geodesic.mathdoc.fr/item/INTO_2021_203_a3/
[1] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR
[2] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Razvitie turbulentnosti po Landau v modeli multiplikator-akselerator”, Dokl. RAN., 420:6 (2008), 739–743 | Zbl
[3] Kosareva E. S., Kulikov A. N., “Ob odnoi nelineinoi kraevoi zadache, modeliruyuschei ekonomicheskie protsessy”, Model. anal. inform. sistem., 10:2 (2003), 18–21
[4] Kulikov A. N., Primenenie metoda invariantnykh mnogoobrazii v lokalnykh zadachakh ustoichivosti i teorii kolebanii, Izd-vo YarGU, Yaroslavl, 1983
[5] Kulikov A. N., “Attraktory dvukh kraevykh zadach dlya modifitsirovannogo nelineinogo telegrafnogo uravneniya”, Nelin. dinam., 4:1 (2008), 57–68 | MR
[6] Landau L. D., “K problemam turbulentnosti”, Dokl. AN SSSR., 44:8 (1944), 339–342
[7] Landau L. D., Lifshits E. M., Teoreticheskaya fiziki. T. 6. Gidrodinamika, Nauka, M., 1988 | MR
[8] Sobolevskii P. E., “Ob uravneniyakh parabolicheskogo tipa v banakhovom prostranstve”, Tr. Mosk. mat. o-va., 10 (1967), 297–370
[9] Funktsionalnyi analiz. Spravochnaya matematicheskaya biblioteka, Nauka, M., 1972
[10] Yakubov S. Ya., “Razreshimost zadachi Koshi dlya abstraktnykh kvazilineinykh giperbolicheskikh uravnenii vtorogo poryadka i ikh prilozheniya”, Tr. Mosk. mat. o-va., 23 (1970), 37–60 | Zbl
[11] Broer H. W., Dumortier F., van Strien S. J., Takens F., Structure in Dynamics, Elsevier, 1991 | MR
[12] Hopf E., “A mathematical example displaying the features of turbulence”, Commun. Pure. Appl. Math., 1 (1948), 303–322 | DOI | MR | Zbl
[13] Kolesov A. Yu, Kulikov A. N., Rosov N. Kh., “Invariant tori of a class of point mappings: the annulus principle”, Differ. Equations., 39:5 (2003), 614–639 | DOI | MR
[14] Kolesov A. Yu, Kulikov A. N., Rosov N. Kh., “Invariant tori of a class of point transformations: preservation of an invariant torus under perturbations”, Differ. Equations., 39:6 (2003), 775–790 | DOI | MR | Zbl
[15] Kulikov A. N., “Landau–Hopf scenario of passage to turbulence in some problems of elastic stability theory”, Differ. Equations., 48:9 (2012), 1278–1291 | DOI | MR | Zbl
[16] Marsden J. E., McCraken M., The Hopf Bifurcation and Its Applications, Springer-Verlag, New-York, 1976 | MR | Zbl
[17] Puu T., Nonlinear Economic Dynamics, Springer-Verlag, Berlin, 1997 | MR | Zbl
[18] Segal I., “Nonlinear semigroups”, Ann. Math., 78:2 (1963), 339–364 | DOI | MR | Zbl
[19] Zhang W. B., Synergetic Economics: Time and Change in Nonlinear Economics, Springer-Verlag, Berlin, 1991 | MR | Zbl