Complete Lorentzian foliations of codimension 2 on closed manifolds
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Tome 203 (2021), pp. 17-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we describe the structure of a complete Lorentzian foliation $(M,F)$ of codimension $2$ on an $n$-dimensional closed manifold. We prove that either $(M,F)$ is a Riemannian foliation or it has constant transverse curvature. We also describe the structure of such foliations obtain a criterion that reduces the problem of chaos in $(M,F)$ to the problem of chaos of the smooth action of the group $O(1,1)$ on the associated, locally symmetric $3$-manifold or to the problem of chaos of its global holonomy group, which is a finitely generated subgroup of the isometry group of the plane with a complete metric of constant curvature.
Mots-clés : foliation, Lorentzian foliation, chaos
Keywords: global holonomy group, Ehresmann connection.
@article{INTO_2021_203_a2,
     author = {N. I. Zhukova and N. G. Chebochko},
     title = {Complete {Lorentzian} foliations of codimension 2 on closed manifolds},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {17--38},
     publisher = {mathdoc},
     volume = {203},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_203_a2/}
}
TY  - JOUR
AU  - N. I. Zhukova
AU  - N. G. Chebochko
TI  - Complete Lorentzian foliations of codimension 2 on closed manifolds
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 17
EP  - 38
VL  - 203
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_203_a2/
LA  - ru
ID  - INTO_2021_203_a2
ER  - 
%0 Journal Article
%A N. I. Zhukova
%A N. G. Chebochko
%T Complete Lorentzian foliations of codimension 2 on closed manifolds
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 17-38
%V 203
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_203_a2/
%G ru
%F INTO_2021_203_a2
N. I. Zhukova; N. G. Chebochko. Complete Lorentzian foliations of codimension 2 on closed manifolds. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Tome 203 (2021), pp. 17-38. http://geodesic.mathdoc.fr/item/INTO_2021_203_a2/

[1] Anosov D. V., “Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny”, Tr. Mat. in-ta im. V. A. Steklova AN SSSR., 90 (1967), 3–210

[2] Bagaev A. V., Zhukova N. I., “Transversalno analiticheskie lorentsevy sloeniya korazmernosti dva”, Izv. vuzov. Povolzh. reg. Fiz.-mat. nauki., 44:4 (2017), 35–47

[3] Bim Dzh., Erlikh P., Globalnaya lorentseva geometriya, Mir, M., 1985 | MR

[4] Zhukova N. I., “Attraktory i analog gipotezy Likhnerovicha dlya konformnykh sloenii”, Sib. mat. zh., 52:3 (2011), 436–450 | MR | Zbl

[5] Zhukova N. I., “Globalnye attraktory konformnykh sloenii”, Mat. sb., 203:3 (2012), 79–106 | MR | Zbl

[6] Zhukova N. I., “Attraktory sloenii s transversalnoi parabolicheskoi geometriei ranga odin”, Mat. zametki., 93:5-6 (2013), 436–450 | MR

[7] Zhukova N. I., “Minimalnye mnozhestva kartanovykh sloenii”, Tr. Mat. in-ta im. V. A. Steklova RAN., 256:1 (2007), 115–147 | MR | Zbl

[8] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii. T. I, Nauka, M., 1981 | MR

[9] Ragunatan M., Diskretnye podgruppy grupp Li, Mir, M., 1977

[10] Beguin F., Bonatti C., Yu B., “Building Anosov flows on $3$-manifolds”, Geom. Topol., 21:3 (2017), 1837–1930 | DOI | MR | Zbl

[11] Blumenthal R. A., Hebda J. J., “Ehresmann connections for foliations”, Indiana Univ. Math. J., 33:4 (1984), 597–611 | DOI | MR | Zbl

[12] Boubel C., Mounoud P., Tarquini C., “Lorentzian foliations on 3-manifolds”, Ergodic Theory Dynam. Syst., 26:5 (2006), 1339–1362 | DOI | MR | Zbl

[13] Cairns G., Davis G., Elton D., Kolganova A., Perversi P., “Chaotic group actions”, L'Ens. Math., 41 (1995), 123–133 | MR | Zbl

[14] Cap A., Slovak J., Parabolic Geometries. I. Background and General Theory, Am. Math. Soc., Providence, Rhode Island, 2009 | MR | Zbl

[15] Frances C., Melnick K., “Topology of automorphism groups of parabolic geometries”, Geom. Topol., 23:1 (2019), 135–169 | DOI | MR | Zbl

[16] Carrière Y., “Author de la conjecture de L. Markus sur les variétés affines”, Invent. Math., 95:3 (1989), 615–628 | DOI | MR | Zbl

[17] Dolgonosova A. Yu., Zhukova N. I., “Pseudo-Riemannian foliations and their graphs”, Lobachevskii J. Math., 39:1 (2018), 54–64 | DOI | MR | Zbl

[18] Epstein D. B. A., Millett K. C., Tischler D., “Leaves without holonomy”, J. London Math. Soc., 16:3 (1977), 548–552 | DOI | MR | Zbl

[19] Frances C., Melnick K., “Topology of automorphism groups of parabolic geometries”, Geom. Topol., 23:1 (2019), 135–169 | DOI | MR | Zbl

[20] Frances C., Tarquini C., “Autour du théorème de Ferrand–Obata”, Ann. Global Anal. Geom., 21:1 (2007), 51–62 | DOI | MR

[21] Gutschera K. R., Invariant metrics for groups of conformal transformations, 1993

[22] Haefliger A. Leaf closures in Riemannian foliations, A fête of topology, Academic Press, Boston, 1988, 3–32 | MR

[23] Hobill D., Burd A., Coley A., Deterministic chaos in general relativity, Springer, New York, 1994 | MR

[24] Molino P., Riemannian foliations, Birkhäuser, Boston, 1988 | MR | Zbl

[25] O'Neil B., Semi-Riemannian geometry with applications to relativity, Academic Press, New York–London, 1983 | MR

[26] Tamura I., Topology of foliations: An introduction, Am. Math. Soc., Providence, Rhode Island, 1992 | MR | Zbl

[27] Tarquini C., “Feuilletages conformes”, Ann. Inst. Fourier., 52:2 (2004), 453–480 | DOI | MR

[28] Tondeur P., Geometry of foliations, Birkhäuser, Basel, 1997 | MR | Zbl

[29] Wolak R. A., “Leaves of foliations with a transverse geometric structures of finite type”, Publ. Math., 33:1 (1989), 153–162 | DOI | MR | Zbl

[30] Zhukova N. I., “Local and global stability of compact leaves and foliations”, Zh. mat. fiz. anal. geom., 9:3 (2013), 400–420 | MR | Zbl

[31] Zhukova N. I., “Complete foliations with transverse rigid geometries and their basic automorphisms”, Vestn. RUDN. Ser. Mat. Fiz. Inform., 2 (2009), 14–35