Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_203_a0, author = {O. Belova}, title = {On a {Grassmann-like} manifold and an analog of the {Neufeld} connection}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--10}, publisher = {mathdoc}, volume = {203}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_203_a0/} }
TY - JOUR AU - O. Belova TI - On a Grassmann-like manifold and an analog of the Neufeld connection JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 3 EP - 10 VL - 203 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_203_a0/ LA - ru ID - INTO_2021_203_a0 ER -
%0 Journal Article %A O. Belova %T On a Grassmann-like manifold and an analog of the Neufeld connection %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 3-10 %V 203 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_203_a0/ %G ru %F INTO_2021_203_a0
O. Belova. On a Grassmann-like manifold and an analog of the Neufeld connection. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Tome 203 (2021), pp. 3-10. http://geodesic.mathdoc.fr/item/INTO_2021_203_a0/
[1] Al-Khassani M. A., Moldovanova E. A., “Otobrazhenie affinnogo prostranstva v mnogoobrazie nul-par proektivnogo prostranstva”, Izv. Tomsk. politekh. un-ta., 322:2 (2013), 24–28
[2] Belova O. O., “Svyaznosti v rassloeniyakh, assotsiirovannykh s mnogoobraziem Grassmana i prostranstvom tsentrirovannykh ploskostei”, Fundam. prikl. mat., 14:2 (2008), 29–67 | MR
[3] Belova O. O., “Tenzor neabsolyutnykh perenesenii na grassmanopodobnom mnogoobrazii tsentrirovannykh ploskostei”, Fundam. prikl. mat., 16:2 (2010), 3–5
[4] Belova O. O., “Indutsirovannaya svyaznost Neifelda na tsentrirovannom mnogoobrazii Grassmana”, Differ. geom. mnogoobr. figur., 2013, no. 44, 15–19
[5] Belova O. O., “Indutsirovanie analoga svyaznosti Neifelda na grassmanopodobnom mnogoobrazii tsentrirovannykh ploskostei”, Differ. geom. mnogoobr. figur., 2014, no. 45, 23–29 | Zbl
[6] Belova O. O., “Tenzor krivizny analoga svyaznosti Neifelda na grassmanopodobnom mnogoobrazii tsentrirovannykh ploskostei”, Differ. geom. mnogoobr. figur., 2015, no. 46, 45–53 | Zbl
[7] Belova O. O., “Tenzor krucheniya analoga svyaznosti Neifelda na grassmanopodobnom mnogoobrazii tsentrirovannykh ploskostei”, Vestn. Balt. feder. un-ta im. I. Kanta., 2015, no. 4, 103–105
[8] Belova O. O., “O kruchenii analoga svyaznosti Neifelda v prostranstve tsentrirovannykh ploskostei”, Differ. geom. mnogoobr. figur., 2017, no. 48, 25–32 | Zbl
[9] Belova O. O., “Ob analoge svyaznosti Neifelda v prostranstve tsentrirovannykh ploskostei s dvukhindeksnymi bazisno-sloevymi formami”, Differ. geom. mnogoobr. figur., 2018, no. 49, 29–35 | Zbl
[10] Belova O. O., “Grassmanopodobnoe mnogoobrazie tsentrirovannykh ploskostei”, Mat. zametki., 104:6 (2018), 812–822 | Zbl
[11] Belova E. E., Belova O. O., “Ob analoge svyaznosti Neifelda v prostranstve tsentrirovannykh ploskostei s odnoindeksnymi bazisno-sloevymi formami”, Differ. geom. mnogoobr. figur., 2019, no. 50, 41–47 | Zbl
[12] Bliznikene I. V., “O geometrii polunegolonomnoi kongruentsii pervogo roda”, Tr. geom. semin. VINITI., 3 (1971), 125–148 | MR | Zbl
[13] Borisenko A. A., Nikolaevskii Yu. A., “Mnogoobraziya Grassmana i grassmanov obraz podmnogoobrazii”, Usp. mat. nauk., 46:2 (1991), 41–83 | MR | Zbl
[14] Bubyakin I. V., “O stroenii kompleksov $m$-mernykh ploskostei proektivnogo prostranstva $P^n$, soderzhaschikh konechnoe chislo torsov”, Mat. zametki Sev.-Vost. feder. un-ta., 24:4 (2017), 3–16 | Zbl
[15] Evtushik L. E., Lumiste Yu. G., Ostianu N. M., Shirokov A. P., “Differentsialno-geometricheskie struktury na mnogoobraziyakh”, Itogi nauki i tekhn. Ser. Probl. geom., 9 (1979), 5–246, VINITI, M.
[16] Ivlev E. T., Moldovanova E. A., “O differentsiruemykh otobrazheniyakh affinnykh prostranstv v mnogoobraziya $m$-ploskostei v mnogomernom evklidovom prostranstve”, Izv. vuzov. Mat., 2009, no. 11, 24–42 | Zbl
[17] Kirichenko V. F., Differentsialno-geometricheskie struktury na mnogoobraziyakh, MPGU, M., 2003
[18] Krivonosov L. N., Lukyanov V. A., “Uravneniya Einshteina na chetyrekhmernom mnogoobrazii konformnoi svyaznosti bez krucheniya”, Zh. Sib. feder. un-ta. Ser. Mat. fiz., 5:3 (2012), 393–408 | Zbl
[19] Laptev G. F., “Differentsialnaya geometriya pogruzhennykh mnogoobrazii. Teoretiko-gruppovoi metod differentsialno-geometricheskikh issledovanii”, Tr. Mosk. mat. o-va., 2 (1953), 275–382 | Zbl
[20] Lumiste Yu. G., “Proektivnye svyaznosti v kanonicheskikh rassloeniyakh mnogoobrazii ploskostei”, Mat. sb., 91 (133):2 (6) (1973), 211–233 | Zbl
[21] Neifeld E. G., “Affinnye svyaznosti na normalizovannom mnogoobrazii ploskostei proektivnogo prostranstva”, Izv. vuzov. Mat., 1976, no. 11, 48–55 | MR | Zbl
[22] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976 | MR
[23] Norden A. P., “Proektivnye metriki na grassmanovykh mnogoobraziyakh”, Izv. vuzov. Mat., 1981, no. 11, 80–83 | Zbl
[24] Ostianu N. M., “Metod Kartana—Lapteva v issledovanii $G$-struktur na mnogoobraziyakh”, Itogi nauki i tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 30 (2002), 5–124
[25] Polyakova K. V., “Tangentsialnoznachnye formy 2-go poryadka”, Mat. zametki., 105:1 (2019), 84–94 | MR | Zbl
[26] Shevchenko Yu. I., Osnascheniya tsentroproektivnykh mnogoobrazii, KGU, Kaliningrad, 2000
[27] Akivis M. A., Goldberg V. V., “A conformal differential invariant and the conformal regidity of hypersurfaces”, Proc. Am. Math. Soc., 125:8 (1997), 2415–2424 | DOI | MR | Zbl
[28] Belova O., “Neifeld's connection induced on the Grassmann manifold”, Acta Univ. Palacki. Olomouc. Fac. rer. nat. Math., 2016, no. 55, 11–14 | MR | Zbl
[29] Belova O., “An analog of Neifeld's connection induced on the space of centerd planes”, Miskolc Math. Notes., 19:2 (2018), 749–754 | DOI | MR | Zbl
[30] Belova O., “Reduction of bundles, connection, curvature, and torsion of the centered planes space at normalization”, Mathematics., 7:10 (2019), 901 | DOI
[31] Huang Z., Wu J., Gool L. V., “Building deep networks on Grassmann manifolds”, 32 AAAI Conf. on Artificial Intelligence (AAAI-18) (New Orleans, Louisiana, USA, February 2–7, 2018), 2018, 3279–3286
[32] Mishra B., Kasai H., Jawanpuria P., Saroop A., “A Riemannian gossip approach to subspace learning on Grassmann manifold”, Machine Learning., 108 (2019), 1783–1803 | DOI | MR | Zbl
[33] Polyakova K. V., “Prolongations generated by horizontal vectors”, J. Geom., 110 (2019), 53 | DOI | MR | Zbl
[34] Tsukada K., “Totally complex submanifolds of a complex Grassmann manifold of 2-planes”, Differ. Geom. Appl., 44 (2016), 30–51 | DOI | MR | Zbl
[35] Zhang J., Zhu G., Heath R.W., Huang K., Grassmannian learning: embedding geometry awareness in shallow and deep learning, arXiv: 1808.02229v2 [cs.LG] | MR