On a Grassmann-like manifold and an analog of the Neufeld connection
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Tome 203 (2021), pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

The invariant analytic Cartan–Laptev method is applied to the study of a Grassmann-like manifold of centered planes in the projective space. In a principal bundle over this manifold, an analog of the Neufeld connection is constructed. We prove that an analog of the strong Norden normalization induces an analog of the Neufeld connection. The curvature and torsion objects of this connection are analyzed and compared with similar objects for Grassmann manifolds and the space of centered planes.
Keywords: Cartan–Laptev method, Grassmann-like manifold of centered planes, Neufeld connection, curvature
Mots-clés : torsion.
@article{INTO_2021_203_a0,
     author = {O. Belova},
     title = {On a {Grassmann-like} manifold and an analog of the {Neufeld} connection},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {203},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_203_a0/}
}
TY  - JOUR
AU  - O. Belova
TI  - On a Grassmann-like manifold and an analog of the Neufeld connection
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 3
EP  - 10
VL  - 203
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_203_a0/
LA  - ru
ID  - INTO_2021_203_a0
ER  - 
%0 Journal Article
%A O. Belova
%T On a Grassmann-like manifold and an analog of the Neufeld connection
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 3-10
%V 203
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_203_a0/
%G ru
%F INTO_2021_203_a0
O. Belova. On a Grassmann-like manifold and an analog of the Neufeld connection. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry, Tome 203 (2021), pp. 3-10. http://geodesic.mathdoc.fr/item/INTO_2021_203_a0/

[1] Al-Khassani M. A., Moldovanova E. A., “Otobrazhenie affinnogo prostranstva v mnogoobrazie nul-par proektivnogo prostranstva”, Izv. Tomsk. politekh. un-ta., 322:2 (2013), 24–28

[2] Belova O. O., “Svyaznosti v rassloeniyakh, assotsiirovannykh s mnogoobraziem Grassmana i prostranstvom tsentrirovannykh ploskostei”, Fundam. prikl. mat., 14:2 (2008), 29–67 | MR

[3] Belova O. O., “Tenzor neabsolyutnykh perenesenii na grassmanopodobnom mnogoobrazii tsentrirovannykh ploskostei”, Fundam. prikl. mat., 16:2 (2010), 3–5

[4] Belova O. O., “Indutsirovannaya svyaznost Neifelda na tsentrirovannom mnogoobrazii Grassmana”, Differ. geom. mnogoobr. figur., 2013, no. 44, 15–19

[5] Belova O. O., “Indutsirovanie analoga svyaznosti Neifelda na grassmanopodobnom mnogoobrazii tsentrirovannykh ploskostei”, Differ. geom. mnogoobr. figur., 2014, no. 45, 23–29 | Zbl

[6] Belova O. O., “Tenzor krivizny analoga svyaznosti Neifelda na grassmanopodobnom mnogoobrazii tsentrirovannykh ploskostei”, Differ. geom. mnogoobr. figur., 2015, no. 46, 45–53 | Zbl

[7] Belova O. O., “Tenzor krucheniya analoga svyaznosti Neifelda na grassmanopodobnom mnogoobrazii tsentrirovannykh ploskostei”, Vestn. Balt. feder. un-ta im. I. Kanta., 2015, no. 4, 103–105

[8] Belova O. O., “O kruchenii analoga svyaznosti Neifelda v prostranstve tsentrirovannykh ploskostei”, Differ. geom. mnogoobr. figur., 2017, no. 48, 25–32 | Zbl

[9] Belova O. O., “Ob analoge svyaznosti Neifelda v prostranstve tsentrirovannykh ploskostei s dvukhindeksnymi bazisno-sloevymi formami”, Differ. geom. mnogoobr. figur., 2018, no. 49, 29–35 | Zbl

[10] Belova O. O., “Grassmanopodobnoe mnogoobrazie tsentrirovannykh ploskostei”, Mat. zametki., 104:6 (2018), 812–822 | Zbl

[11] Belova E. E., Belova O. O., “Ob analoge svyaznosti Neifelda v prostranstve tsentrirovannykh ploskostei s odnoindeksnymi bazisno-sloevymi formami”, Differ. geom. mnogoobr. figur., 2019, no. 50, 41–47 | Zbl

[12] Bliznikene I. V., “O geometrii polunegolonomnoi kongruentsii pervogo roda”, Tr. geom. semin. VINITI., 3 (1971), 125–148 | MR | Zbl

[13] Borisenko A. A., Nikolaevskii Yu. A., “Mnogoobraziya Grassmana i grassmanov obraz podmnogoobrazii”, Usp. mat. nauk., 46:2 (1991), 41–83 | MR | Zbl

[14] Bubyakin I. V., “O stroenii kompleksov $m$-mernykh ploskostei proektivnogo prostranstva $P^n$, soderzhaschikh konechnoe chislo torsov”, Mat. zametki Sev.-Vost. feder. un-ta., 24:4 (2017), 3–16 | Zbl

[15] Evtushik L. E., Lumiste Yu. G., Ostianu N. M., Shirokov A. P., “Differentsialno-geometricheskie struktury na mnogoobraziyakh”, Itogi nauki i tekhn. Ser. Probl. geom., 9 (1979), 5–246, VINITI, M.

[16] Ivlev E. T., Moldovanova E. A., “O differentsiruemykh otobrazheniyakh affinnykh prostranstv v mnogoobraziya $m$-ploskostei v mnogomernom evklidovom prostranstve”, Izv. vuzov. Mat., 2009, no. 11, 24–42 | Zbl

[17] Kirichenko V. F., Differentsialno-geometricheskie struktury na mnogoobraziyakh, MPGU, M., 2003

[18] Krivonosov L. N., Lukyanov V. A., “Uravneniya Einshteina na chetyrekhmernom mnogoobrazii konformnoi svyaznosti bez krucheniya”, Zh. Sib. feder. un-ta. Ser. Mat. fiz., 5:3 (2012), 393–408 | Zbl

[19] Laptev G. F., “Differentsialnaya geometriya pogruzhennykh mnogoobrazii. Teoretiko-gruppovoi metod differentsialno-geometricheskikh issledovanii”, Tr. Mosk. mat. o-va., 2 (1953), 275–382 | Zbl

[20] Lumiste Yu. G., “Proektivnye svyaznosti v kanonicheskikh rassloeniyakh mnogoobrazii ploskostei”, Mat. sb., 91 (133):2 (6) (1973), 211–233 | Zbl

[21] Neifeld E. G., “Affinnye svyaznosti na normalizovannom mnogoobrazii ploskostei proektivnogo prostranstva”, Izv. vuzov. Mat., 1976, no. 11, 48–55 | MR | Zbl

[22] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976 | MR

[23] Norden A. P., “Proektivnye metriki na grassmanovykh mnogoobraziyakh”, Izv. vuzov. Mat., 1981, no. 11, 80–83 | Zbl

[24] Ostianu N. M., “Metod Kartana—Lapteva v issledovanii $G$-struktur na mnogoobraziyakh”, Itogi nauki i tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 30 (2002), 5–124

[25] Polyakova K. V., “Tangentsialnoznachnye formy 2-go poryadka”, Mat. zametki., 105:1 (2019), 84–94 | MR | Zbl

[26] Shevchenko Yu. I., Osnascheniya tsentroproektivnykh mnogoobrazii, KGU, Kaliningrad, 2000

[27] Akivis M. A., Goldberg V. V., “A conformal differential invariant and the conformal regidity of hypersurfaces”, Proc. Am. Math. Soc., 125:8 (1997), 2415–2424 | DOI | MR | Zbl

[28] Belova O., “Neifeld's connection induced on the Grassmann manifold”, Acta Univ. Palacki. Olomouc. Fac. rer. nat. Math., 2016, no. 55, 11–14 | MR | Zbl

[29] Belova O., “An analog of Neifeld's connection induced on the space of centerd planes”, Miskolc Math. Notes., 19:2 (2018), 749–754 | DOI | MR | Zbl

[30] Belova O., “Reduction of bundles, connection, curvature, and torsion of the centered planes space at normalization”, Mathematics., 7:10 (2019), 901 | DOI

[31] Huang Z., Wu J., Gool L. V., “Building deep networks on Grassmann manifolds”, 32 AAAI Conf. on Artificial Intelligence (AAAI-18) (New Orleans, Louisiana, USA, February 2–7, 2018), 2018, 3279–3286

[32] Mishra B., Kasai H., Jawanpuria P., Saroop A., “A Riemannian gossip approach to subspace learning on Grassmann manifold”, Machine Learning., 108 (2019), 1783–1803 | DOI | MR | Zbl

[33] Polyakova K. V., “Prolongations generated by horizontal vectors”, J. Geom., 110 (2019), 53 | DOI | MR | Zbl

[34] Tsukada K., “Totally complex submanifolds of a complex Grassmann manifold of 2-planes”, Differ. Geom. Appl., 44 (2016), 30–51 | DOI | MR | Zbl

[35] Zhang J., Zhu G., Heath R.W., Huang K., Grassmannian learning: embedding geometry awareness in shallow and deep learning, arXiv: 1808.02229v2 [cs.LG] | MR