Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_202_a4, author = {M. V. Shamolin}, title = {Some integrable nonautonomous dynamical systems with dissipation}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {99--113}, publisher = {mathdoc}, volume = {202}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_202_a4/} }
TY - JOUR AU - M. V. Shamolin TI - Some integrable nonautonomous dynamical systems with dissipation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 99 EP - 113 VL - 202 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_202_a4/ LA - ru ID - INTO_2021_202_a4 ER -
%0 Journal Article %A M. V. Shamolin %T Some integrable nonautonomous dynamical systems with dissipation %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 99-113 %V 202 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_202_a4/ %G ru %F INTO_2021_202_a4
M. V. Shamolin. Some integrable nonautonomous dynamical systems with dissipation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 202 (2021), pp. 99-113. http://geodesic.mathdoc.fr/item/INTO_2021_202_a4/
[1] Aidagulov R. R., Shamolin M. V., “Operatory usredneniya i realnye uravneniya gidromekhaniki”, Sovr. mat. prilozh., 65 (2009), 31–46
[2] Aidagulov R. R., Shamolin M. V., “Nelokalnaya gidrodinamika i nekotorye prilozheniya”, Sovr. mat. prilozh., 100 (2016), 145–169
[3] Bryuno A. D., Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, Nauka, M., 1979
[4] Byushgens G. S., Studnev R. V., Dinamika prodolnogo i bokovogo dvizheniya, Mashinostroenie, M., 1969
[5] Byushgens G. S., Studnev R. V., Dinamika samoleta. Prostranstvennoe dvizhenie, Mashinostroenie, M., 1988
[6] Georgievskii D. V., Shamolin M. V., “Kinematika i geometriya mass tverdogo tela s nepodvizhnoi tochkoi v $\mathbb{R}^{n}$”, Dokl. RAN., 380:1 (2001), 47–50
[7] Eroshin V. A., Samsonov V. A., Shamolin M. V., “Modelnaya zadacha o tormozhenii tela v soprotivlyayuscheisya srede pri struinom obtekanii”, Izv. RAN. Mekh. zhidk. gaza., 1995, no. 3, 23–27
[8] Zhukovskii N. E., “O parenii ptits”, Poln. sobr. soch. T. 5, Fizmatgiz, M., 1937, 49–59
[9] Kozlov V. V., “K zadache o padenii tyazhelogo tverdogo tela v soprotivlyayuscheisya srede”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1990, no. 1, 79–87
[10] Lokshin B. Ya., Samsonov V. A., Shamolin M. V., “Mayatnikovye sistemy s dinamicheskoi simmetriei”, Sovr. mat. prilozh., 100 (2016), 76–133
[11] Okunev Yu. M., Sadovnichii V. A., Samsonov V. A., Chernyi G. G., “Kompleks modelirovaniya zadach dinamiki poleta”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1996, no. 6, 66–75 | Zbl
[12] Samsonov V. A., Shamolin M. V., “K zadache o dvizhenii tela v soprotivlyayuscheisya srede”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1989, no. 3, 51–54 | Zbl
[13] Selivanova N. Yu., Shamolin M. V., “Lokalnaya razreshimost odnofaznoi zadachi so svobodnoi granitsei”, Sovr. mat. prilozh., 78 (2012), 99–108
[14] Tatarinov Ya. V., Lektsii po klassicheskoi dinamike, MGU, M., 1984
[15] Trofimov V. V., Shamolin M. V., “Geometricheskie i dinamicheskie invarianty integriruemykh gamiltonovykh i dissipativnykh sistem”, Fundam. prikl. mat., 16:4 (2010), 3–229
[16] Chaplygin S. A., Izbrannye trudy, Nauka, M., 1976 | MR
[17] Shamolin M. V., “Klassifikatsiya fazovykh portretov v zadache o dvizhenii tela v soprotivlyayuscheisya srede pri nalichii lineinogo dempfiruyuschego momenta”, Prikl. mat. mekh., 57:4 (1993), 40–49 | MR | Zbl
[18] Shamolin M. V., “Vvedenie v zadachu o tormozhenii tela v soprotivlyayuscheisya srede i novoe dvukhparametricheskoe semeistvo fazovykh portretov”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1996, no. 4, 57–69 | MR | Zbl
[19] Shamolin M. V., “Ob integriruemom sluchae v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Izv. RAN. Mekh. tv. tela., 1997, no. 2, 65–68
[20] Shamolin M. V., “Prostranstvennye topograficheskie sistemy Puankare i sistemy sravneniya”, Usp. mat. nauk., 52:3 (1997), 177–178 | MR | Zbl
[21] Shamolin M. V., “Ob integriruemosti v transtsendentnykh funktsiyakh”, Usp. mat. nauk., 53:3 (1998), 209–210 | MR | Zbl
[22] Shamolin M. V., “O predelnykh mnozhestvakh differentsialnykh uravnenii okolo singulyarnykh osobykh tochek”, Usp. mat. nauk., 55:3 (2000), 187–188 | MR | Zbl
[23] Shamolin M. V., “Sopostavlenie integriruemykh po Yakobi sluchaev ploskogo i prostranstvennogo dvizheniya tela v srede pri struinom obtekanii”, Prikl. mat. mekh., 69:6 (2005), 1003–1010 | MR | Zbl
[24] Shamolin M. V., “Polnaya integriruemost uravnenii dvizheniya prostranstvennogo mayatnika v potoke sredy pri uchete vraschatelnykh proizvodnykh momenta sily ee vozdeistviya”, Izv. RAN. Mekh. tv. tela., 2007, no. 3, 187–192
[25] Shamolin M. V., “Sluchai polnoi integriruemosti v dinamike na kasatelnom rassloenii dvumernoi sfery”, Usp. mat. nauk., 62:5 (2007), 169–170 | MR | Zbl
[26] Shamolin M. V., “Dinamicheskie sistemy s peremennoi dissipatsiei: podkhody, metody, prilozheniya”, Fundam. prikl. mat., 14:3 (2008), 3–237
[27] Shamolin M. V., “Ob integriruemosti v elementarnykh funktsiyakh nekotorykh klassov nekonservativnykh dinamicheskikh sistem”, Sovr. mat. prilozh., 62 (2009), 131–171
[28] Shamolin M. V., “Ob ustoichivosti pryamolineinogo postupatelnogo dvizheniya”, Prikl. mekh., 45:6 (2009), 125–140 | Zbl
[29] Shamolin M. V., “Novye sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela”, Dokl. RAN., 431:3 (2010), 339–343 | MR | Zbl
[30] Shamolin M. V., “Dvizhenie tverdogo tela v soprotivlyayuscheisya srede”, Mat. model., 23:12 (2011), 79–104 | MR | Zbl
[31] Shamolin M. V., “Mnogoparametricheskoe semeistvo fazovykh portretov v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 2011, no. 3, 24–30 | Zbl
[32] Shamolin M. V., “Novyi sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi, pri uchete lineinogo dempfirovaniya”, Dokl. RAN., 442:4 (2012), 479–481 | MR
[33] Shamolin M. V., “Avtokolebaniya pri tormozhenii tverdogo tela v soprotivlyayuscheisya srede”, Sib. zh. industr. mat., 20:4 (72) (2017), 90–102 | Zbl
[34] Shamolin M. V., “Modelirovanie prostranstvennogo vozdeistviya sredy na telo konicheskoi formy”, Sib. zh. industr. mat., 21:2 (74) (2018), 122–130 | MR | Zbl
[35] Shamolin M. V., “Semeistvo fazovykh portretov v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego s soprotivlyayuscheisya sredoi”, Sib. zh. industr. mat., 22:2 (78) (2019), 118–131 | Zbl
[36] Errousmit D., Pleis K., Obyknovennye differentsialnye uravneniya. Kachestvennaya teoriya s prilozheniyami, Mir, M., 1986
[37] Okunev Yu. M., Shamolin M. V., “On integrability in elementary functions of certain classes of complex nonautonomous equations”, J. Math. Sci., 165:6 (2010), 732–742 | DOI | MR | Zbl
[38] Okunev Yu. M., Shamolin M. V., “On the construction of the general solution of a class of complex nonautonomous equations”, J. Math. Sci., 204:6 (2015), 787–799 | DOI | MR | Zbl
[39] Shamolin M. V., “Some questions of the qualitative theory of ordinary differential equations and dynamics of a rigid body interacting with a medium”, J. Math. Sci., 110:2 (2002), 2528–2557 | DOI | MR | Zbl
[40] Shamolin M. V., “Foundations of differential and topological diagnostics”, J. Math. Sci., 114:1 (2003), 976–1024 | DOI | MR | Zbl
[41] Shamolin M. V., “New integrable cases and families of portraits in the plane and spatial dynamics of a rigid body interacting with a medium”, J. Math. Sci., 114:1 (2003), 919–975 | DOI | MR | Zbl
[42] Shamolin M. V., “Classes of variable dissipation systems with nonzero mean in the dynamics of a rigid body”, J. Math. Sci., 122:1 (2004), 2841–2915 | DOI | MR | Zbl