Some integrable nonautonomous dynamical systems with dissipation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 202 (2021), pp. 99-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we search for new examples of integrable second order, complex, linear, nonautonomous, ordinary differential equations. We use the method of canonical transformations, in which the general solution can be expressed in quadratures by means of an explicit generating function. For some types of equations, we show that the general solution can be constructed as an absolutely and uniformly convergent series of a complex parameter that runs through the whole complex plane, while the real-valued independent variable runs through an arbitrarily large segment of the real axis.
Keywords: nonautonomous dynamical system, integrability, canonical transformation.
@article{INTO_2021_202_a4,
     author = {M. V. Shamolin},
     title = {Some integrable nonautonomous dynamical systems with dissipation},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {99--113},
     publisher = {mathdoc},
     volume = {202},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_202_a4/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Some integrable nonautonomous dynamical systems with dissipation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 99
EP  - 113
VL  - 202
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_202_a4/
LA  - ru
ID  - INTO_2021_202_a4
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Some integrable nonautonomous dynamical systems with dissipation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 99-113
%V 202
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_202_a4/
%G ru
%F INTO_2021_202_a4
M. V. Shamolin. Some integrable nonautonomous dynamical systems with dissipation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 202 (2021), pp. 99-113. http://geodesic.mathdoc.fr/item/INTO_2021_202_a4/

[1] Aidagulov R. R., Shamolin M. V., “Operatory usredneniya i realnye uravneniya gidromekhaniki”, Sovr. mat. prilozh., 65 (2009), 31–46

[2] Aidagulov R. R., Shamolin M. V., “Nelokalnaya gidrodinamika i nekotorye prilozheniya”, Sovr. mat. prilozh., 100 (2016), 145–169

[3] Bryuno A. D., Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, Nauka, M., 1979

[4] Byushgens G. S., Studnev R. V., Dinamika prodolnogo i bokovogo dvizheniya, Mashinostroenie, M., 1969

[5] Byushgens G. S., Studnev R. V., Dinamika samoleta. Prostranstvennoe dvizhenie, Mashinostroenie, M., 1988

[6] Georgievskii D. V., Shamolin M. V., “Kinematika i geometriya mass tverdogo tela s nepodvizhnoi tochkoi v $\mathbb{R}^{n}$”, Dokl. RAN., 380:1 (2001), 47–50

[7] Eroshin V. A., Samsonov V. A., Shamolin M. V., “Modelnaya zadacha o tormozhenii tela v soprotivlyayuscheisya srede pri struinom obtekanii”, Izv. RAN. Mekh. zhidk. gaza., 1995, no. 3, 23–27

[8] Zhukovskii N. E., “O parenii ptits”, Poln. sobr. soch. T. 5, Fizmatgiz, M., 1937, 49–59

[9] Kozlov V. V., “K zadache o padenii tyazhelogo tverdogo tela v soprotivlyayuscheisya srede”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1990, no. 1, 79–87

[10] Lokshin B. Ya., Samsonov V. A., Shamolin M. V., “Mayatnikovye sistemy s dinamicheskoi simmetriei”, Sovr. mat. prilozh., 100 (2016), 76–133

[11] Okunev Yu. M., Sadovnichii V. A., Samsonov V. A., Chernyi G. G., “Kompleks modelirovaniya zadach dinamiki poleta”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1996, no. 6, 66–75 | Zbl

[12] Samsonov V. A., Shamolin M. V., “K zadache o dvizhenii tela v soprotivlyayuscheisya srede”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1989, no. 3, 51–54 | Zbl

[13] Selivanova N. Yu., Shamolin M. V., “Lokalnaya razreshimost odnofaznoi zadachi so svobodnoi granitsei”, Sovr. mat. prilozh., 78 (2012), 99–108

[14] Tatarinov Ya. V., Lektsii po klassicheskoi dinamike, MGU, M., 1984

[15] Trofimov V. V., Shamolin M. V., “Geometricheskie i dinamicheskie invarianty integriruemykh gamiltonovykh i dissipativnykh sistem”, Fundam. prikl. mat., 16:4 (2010), 3–229

[16] Chaplygin S. A., Izbrannye trudy, Nauka, M., 1976 | MR

[17] Shamolin M. V., “Klassifikatsiya fazovykh portretov v zadache o dvizhenii tela v soprotivlyayuscheisya srede pri nalichii lineinogo dempfiruyuschego momenta”, Prikl. mat. mekh., 57:4 (1993), 40–49 | MR | Zbl

[18] Shamolin M. V., “Vvedenie v zadachu o tormozhenii tela v soprotivlyayuscheisya srede i novoe dvukhparametricheskoe semeistvo fazovykh portretov”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1996, no. 4, 57–69 | MR | Zbl

[19] Shamolin M. V., “Ob integriruemom sluchae v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Izv. RAN. Mekh. tv. tela., 1997, no. 2, 65–68

[20] Shamolin M. V., “Prostranstvennye topograficheskie sistemy Puankare i sistemy sravneniya”, Usp. mat. nauk., 52:3 (1997), 177–178 | MR | Zbl

[21] Shamolin M. V., “Ob integriruemosti v transtsendentnykh funktsiyakh”, Usp. mat. nauk., 53:3 (1998), 209–210 | MR | Zbl

[22] Shamolin M. V., “O predelnykh mnozhestvakh differentsialnykh uravnenii okolo singulyarnykh osobykh tochek”, Usp. mat. nauk., 55:3 (2000), 187–188 | MR | Zbl

[23] Shamolin M. V., “Sopostavlenie integriruemykh po Yakobi sluchaev ploskogo i prostranstvennogo dvizheniya tela v srede pri struinom obtekanii”, Prikl. mat. mekh., 69:6 (2005), 1003–1010 | MR | Zbl

[24] Shamolin M. V., “Polnaya integriruemost uravnenii dvizheniya prostranstvennogo mayatnika v potoke sredy pri uchete vraschatelnykh proizvodnykh momenta sily ee vozdeistviya”, Izv. RAN. Mekh. tv. tela., 2007, no. 3, 187–192

[25] Shamolin M. V., “Sluchai polnoi integriruemosti v dinamike na kasatelnom rassloenii dvumernoi sfery”, Usp. mat. nauk., 62:5 (2007), 169–170 | MR | Zbl

[26] Shamolin M. V., “Dinamicheskie sistemy s peremennoi dissipatsiei: podkhody, metody, prilozheniya”, Fundam. prikl. mat., 14:3 (2008), 3–237

[27] Shamolin M. V., “Ob integriruemosti v elementarnykh funktsiyakh nekotorykh klassov nekonservativnykh dinamicheskikh sistem”, Sovr. mat. prilozh., 62 (2009), 131–171

[28] Shamolin M. V., “Ob ustoichivosti pryamolineinogo postupatelnogo dvizheniya”, Prikl. mekh., 45:6 (2009), 125–140 | Zbl

[29] Shamolin M. V., “Novye sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela”, Dokl. RAN., 431:3 (2010), 339–343 | MR | Zbl

[30] Shamolin M. V., “Dvizhenie tverdogo tela v soprotivlyayuscheisya srede”, Mat. model., 23:12 (2011), 79–104 | MR | Zbl

[31] Shamolin M. V., “Mnogoparametricheskoe semeistvo fazovykh portretov v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 2011, no. 3, 24–30 | Zbl

[32] Shamolin M. V., “Novyi sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi, pri uchete lineinogo dempfirovaniya”, Dokl. RAN., 442:4 (2012), 479–481 | MR

[33] Shamolin M. V., “Avtokolebaniya pri tormozhenii tverdogo tela v soprotivlyayuscheisya srede”, Sib. zh. industr. mat., 20:4 (72) (2017), 90–102 | Zbl

[34] Shamolin M. V., “Modelirovanie prostranstvennogo vozdeistviya sredy na telo konicheskoi formy”, Sib. zh. industr. mat., 21:2 (74) (2018), 122–130 | MR | Zbl

[35] Shamolin M. V., “Semeistvo fazovykh portretov v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego s soprotivlyayuscheisya sredoi”, Sib. zh. industr. mat., 22:2 (78) (2019), 118–131 | Zbl

[36] Errousmit D., Pleis K., Obyknovennye differentsialnye uravneniya. Kachestvennaya teoriya s prilozheniyami, Mir, M., 1986

[37] Okunev Yu. M., Shamolin M. V., “On integrability in elementary functions of certain classes of complex nonautonomous equations”, J. Math. Sci., 165:6 (2010), 732–742 | DOI | MR | Zbl

[38] Okunev Yu. M., Shamolin M. V., “On the construction of the general solution of a class of complex nonautonomous equations”, J. Math. Sci., 204:6 (2015), 787–799 | DOI | MR | Zbl

[39] Shamolin M. V., “Some questions of the qualitative theory of ordinary differential equations and dynamics of a rigid body interacting with a medium”, J. Math. Sci., 110:2 (2002), 2528–2557 | DOI | MR | Zbl

[40] Shamolin M. V., “Foundations of differential and topological diagnostics”, J. Math. Sci., 114:1 (2003), 976–1024 | DOI | MR | Zbl

[41] Shamolin M. V., “New integrable cases and families of portraits in the plane and spatial dynamics of a rigid body interacting with a medium”, J. Math. Sci., 114:1 (2003), 919–975 | DOI | MR | Zbl

[42] Shamolin M. V., “Classes of variable dissipation systems with nonzero mean in the dynamics of a rigid body”, J. Math. Sci., 122:1 (2004), 2841–2915 | DOI | MR | Zbl