Families of phase portraits for dynamical systems of pendulum type
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 202 (2021), pp. 70-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

In many branches of physics (e.g., dynamics of rigid bodies in nonconservative fields, theory of oscillations, theoretical physics), so-called pendulum-type systems often arise. In this paper, we present methods of analysing such systems that allow one to generalize the previous results of the author concerning such systems. Also, we discuss some problems of the qualitative theory of ordinary differential equations. We prove that generalized systems have nonequivalent phase portraits obtained earlier.
Keywords: dynamical system, Poincaré topographic system, comparison system.
@article{INTO_2021_202_a3,
     author = {M. V. Shamolin},
     title = {Families of phase portraits for dynamical systems of pendulum type},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {70--98},
     publisher = {mathdoc},
     volume = {202},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_202_a3/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Families of phase portraits for dynamical systems of pendulum type
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 70
EP  - 98
VL  - 202
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_202_a3/
LA  - ru
ID  - INTO_2021_202_a3
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Families of phase portraits for dynamical systems of pendulum type
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 70-98
%V 202
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_202_a3/
%G ru
%F INTO_2021_202_a3
M. V. Shamolin. Families of phase portraits for dynamical systems of pendulum type. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 202 (2021), pp. 70-98. http://geodesic.mathdoc.fr/item/INTO_2021_202_a3/

[1] Aidagulov R. R., Shamolin M. V., “Nelokalnaya gidrodinamika i nekotorye prilozheniya”, Sovr. mat. prilozh., 100 (2016), 145–169

[2] Andreev A. V., Shamolin M. V., “Modelirovanie vozdeistviya sredy na telo konicheskoi formy i semeistva fazovykh portretov v prostranstve kvaziskorostei”, Prikl. mekh. tekhn. fiz., 56:4 (2015), 85–91 | Zbl

[3] Bendikson I., “O krivykh, opredelyaemykh differentsialnymi uravneniyami”, Usp. mat. nauk., 9 (1941), 119–211

[4] Bryuno A. D., Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, Nauka, M., 1979

[5] Burbaki N., Integrirovanie, Nauka, M., 1970 | MR

[6] Golubev V. V., Lektsii po integrirovaniyu uravnenii dvizheniya tyazhelogo tverdogo tela okolo nepodvizhnoi tochki, Gostekhizdat, M.-L., 1953 | MR

[7] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979 | MR

[8] Kozlov V. V., Metody kachestvennogo analiza v dinamike tverdogo tela, Izd-vo MGU, M., 1980

[9] Kozlov V. V., “K zadache o padenii tyazhelogo tverdogo tela v soprotivlyayuscheisya srede”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1990, no. 1, 79–87

[10] Lokshin B. Ya., Samsonov V. A., Shamolin M. V., “Mayatnikovye sistemy s dinamicheskoi simmetriei”, Sovr. mat. prilozh., 100 (2016), 76–133

[11] Okunev Yu. M., Shamolin M. V., “Ob integriruemosti v elementarnykh funktsiyakh nekotorykh klassov kompleksnykh neavtonomnykh uravnenii”, Sovr. mat. prilozh., 65 (2009), 121–130

[12] Puankare A., O krivykh, opredelyaemykh differentsialnymi uravneniyami, OGIZ, M.-L., 1947

[13] Samsonov V. A., Shamolin M. V., “K zadache o dvizhenii tela v soprotivlyayuscheisya srede”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1989, no. 3, 51–54 | Zbl

[14] Tabachnikov V. G., “Statsionarnye kharakteristiki krylev na malykh skorostyakh vo vsem diapazone uglov ataki”, Tr. TsAGI., 1974, no. 1621, 18–24

[15] Tikhonov A. A., “Metod upravleniya dlya uglovoi stabilizatsii elektrodinamicheskoi trosovoi sistemy”, Avtomat. telemekh., 2020, no. 2, 91–114 | Zbl

[16] Trofimov V. V., Shamolin M. V., “Geometricheskie i dinamicheskie invarianty integriruemykh gamiltonovykh i dissipativnykh sistem”, Fundam. prikl. mat., 16:4 (2010), 3–229

[17] Chaplygin S. A., “O dvizhenii tyazhelykh tel v neszhimaemoi zhidkosti”, Poln. sobr. soch. T. 1, Izd-vo AN SSSR, L., 1933, 133–135

[18] Chaplygin S. A., Izbrannye trudy, Nauka, M., 1976 | MR

[19] Shabat B. V., Vvedenie v kompleksnyi analiz, Nauka, M., 1987

[20] Shamolin M. V., “K zadache o dvizhenii tela v srede s soprotivleniem”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1992, no. 1, 52–58 | MR | Zbl

[21] Shamolin M. V., “Zamknutye traektorii razlichnogo topologicheskogo tipa v zadache o dvizhenii tela v srede s soprotivleniem”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1992, no. 2, 52–56 | MR | Zbl

[22] Shamolin M. V., “Klassifikatsiya fazovykh portretov v zadache o dvizhenii tela v soprotivlyayuscheisya srede pri nalichii lineinogo dempfiruyuschego momenta”, Prikl. mat. mekh., 57:4 (1993), 40–49 | MR | Zbl

[23] Shamolin M. V., “Primenenie metodov topograficheskikh sistem Puankare i sistem sravneniya v nekotorykh konkretnykh sistemakh differentsialnykh uravnenii”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1993, no. 2, 66–70 | MR | Zbl

[24] Shamolin M. V., “Suschestvovanie i edinstvennost traektorii, imeyuschikh v kachestve predelnykh mnozhestv beskonechno udalennye tochki, dlya dinamicheskikh sistem na ploskosti”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1993, no. 1, 68–71 | MR

[25] Shamolin M. V., “Novoe dvuparametricheskoe semeistvo fazovykh portretov v zadache o dvizhenii tela v srede”, Dokl. RAN., 337:5 (1994), 611–614 | Zbl

[26] Shamolin M. V., “Vvedenie v zadachu o tormozhenii tela v soprotivlyayuscheisya srede i novoe dvukhparametricheskoe semeistvo fazovykh portretov”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1996, no. 4, 57–69 | MR | Zbl

[27] Shamolin M. V., “Mnogoobrazie tipov fazovykh portretov v dinamike tverdogo tela, vzaimodeistvuyuschego s soprotivlyayuscheisya sredoi”, Dokl. RAN., 349:2 (1996), 193–197 | MR | Zbl

[28] Shamolin M. V., “Opredelenie otnositelnoi grubosti i dvuparametricheskoe semeistvo fazovykh portretov v dinamike tverdogo tela”, Usp. mat. nauk., 51:1 (1996), 175–176 | MR | Zbl

[29] Shamolin M. V., “Prostranstvennye topograficheskie sistemy Puankare i sistemy sravneniya”, Usp. mat. nauk., 52:3 (1997), 177–178 | MR | Zbl

[30] Shamolin M. V., “Semeistvo portretov s predelnymi tsiklami v ploskoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Izv. RAN. Mekh. tv. tela., 1998, no. 6, 29–37

[31] Shamolin M. V., “O grubosti dissipativnykh sistem i otnositelnoi grubosti i negrubosti sistem s peremennoi dissipatsiei”, Usp. mat. nauk., 54:5 (1999), 181–182 | MR | Zbl

[32] Shamolin M. V., “Novoe semeistvo fazovykh portretov v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Dokl. RAN., 371:4 (2000), 480–483

[33] Shamolin M. V., “Ob integrirovanii nekotorykh klassov nekonservativnykh sistem”, Usp. mat. nauk., 57:1 (2002), 169–170 | MR

[34] Shamolin M. V., “Sopostavlenie integriruemykh po Yakobi sluchaev ploskogo i prostranstvennogo dvizheniya tela v srede pri struinom obtekanii”, Prikl. mat. mekh., 69:6 (2005), 1003–1010 | MR | Zbl

[35] Shamolin M. V., “Sluchai polnoi integriruemosti v dinamike na kasatelnom rassloenii dvumernoi sfery”, Usp. mat. nauk., 62:5 (2007), 169–170 | MR | Zbl

[36] Shamolin M. V., “Dinamicheskie sistemy s peremennoi dissipatsiei: podkhody, metody, prilozheniya”, Fundam. prikl. mat., 14:3 (2008), 3–237

[37] Shamolin M. V., “Ob integriruemosti v elementarnykh funktsiyakh nekotorykh klassov dinamicheskikh sistem”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 2008, no. 3, 43–49 | Zbl

[38] Shamolin M. V., “Trekhparametricheskoe semeistvo fazovykh portretov v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Dokl. RAN., 418:1 (2008), 46–51 | MR | Zbl

[39] Shamolin M. V., “Novye sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela”, Dokl. RAN., 431:3 (2010), 339–343 | MR | Zbl

[40] Shamolin M. V., “Mnogoparametricheskoe semeistvo fazovykh portretov v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 2011, no. 3, 24–30 | Zbl

[41] Shamolin M. V., “Nekotorye voprosy kachestvennoi teorii v dinamike sistem s peremennoi dissipatsiei”, Sovr. mat. prilozh., 78 (2012), 138–147

[42] Shamolin M. V., “Novyi sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi, pri uchete lineinogo dempfirovaniya”, Dokl. RAN., 442:4 (2012), 479–481 | MR

[43] Shamolin M. V., “Novyi sluchai integriruemosti uravnenii dinamiki na kasatelnom rassloenii k trekhmernoi sfere”, Usp. mat. nauk., 68:5 (413) (2013), 185–186 | MR | Zbl

[44] Shamolin M. V., “Voprosy kachestvennogo analiza pri modelirovanii dvizheniya tverdogo tela v soprotivlyayuscheisya srede”, Sovr. mat. prilozh., 98 (2015), 106–142

[45] Shamolin M. V., “Modelirovanie dvizheniya tverdogo tela v soprotivlyayuscheisya srede i analogii s vikhrevymi dorozhkami”, Mat. model., 27:1 (2015), 33–53 | MR | Zbl

[46] Shamolin M. V., “K zadache o svobodnom tormozhenii tverdogo tela v soprotivlyayuscheisya srede”, Prikl. mekh. tekhn. fiz., 57:4 (2016), 43–56 | Zbl

[47] Shamolin M. V., “Transtsendentnye pervye integraly dinamicheskikh sistem na kasatelnom rassloenii k sfere”, Sovr. mat. prilozh., 100 (2016), 58–75

[48] Shamolin M. V., “Avtokolebaniya pri tormozhenii tverdogo tela v soprotivlyayuscheisya srede”, Sib. zh. industr. mat., 20:4 (72) (2017), 90–102 | Zbl

[49] Shamolin M. V., “Fazovye portrety dinamicheskikh uravnenii dvizheniya tverdogo tela v soprotivlyayuscheisya srede”, Itogi nauki i tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 135, 94–122 | MR

[50] Shamolin M. V., “Otnositelnaya strukturnaya ustoichivost i neustoichivost razlichnykh stepenei v sistemakh s dissipatsiei”, Probl. mat. anal., 2019, no. 97, 167–178 | Zbl

[51] Errousmit D., Pleis K., Obyknovennye differentsialnye uravneniya. Kachestvennaya teoriya s prilozheniyami, Mir, M., 1986

[52] Aleksandrov A. Yu., Aleksandrova E. B., Tikhonov A. A., “On the monoaxial stabilization of a rigid body under vanishing restoring torque”, AIP Conf. Proc., 1959 (2018), 080001 | DOI | MR

[53] Tikhonov A. A., Yakovlev A. B., “On dependence of equilibrium characteristics of the space tethered system on environmental parameters”, Int. J. Plasma Env. Sci. Techn., 13:1, 49–52 | MR