Families of phase portraits for dynamical systems of pendulum type
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 202 (2021), pp. 70-98

Voir la notice de l'article provenant de la source Math-Net.Ru

In many branches of physics (e.g., dynamics of rigid bodies in nonconservative fields, theory of oscillations, theoretical physics), so-called pendulum-type systems often arise. In this paper, we present methods of analysing such systems that allow one to generalize the previous results of the author concerning such systems. Also, we discuss some problems of the qualitative theory of ordinary differential equations. We prove that generalized systems have nonequivalent phase portraits obtained earlier.
Keywords: dynamical system, Poincaré topographic system, comparison system.
@article{INTO_2021_202_a3,
     author = {M. V. Shamolin},
     title = {Families of phase portraits for dynamical systems of pendulum type},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {70--98},
     publisher = {mathdoc},
     volume = {202},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_202_a3/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Families of phase portraits for dynamical systems of pendulum type
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 70
EP  - 98
VL  - 202
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_202_a3/
LA  - ru
ID  - INTO_2021_202_a3
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Families of phase portraits for dynamical systems of pendulum type
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 70-98
%V 202
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_202_a3/
%G ru
%F INTO_2021_202_a3
M. V. Shamolin. Families of phase portraits for dynamical systems of pendulum type. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 202 (2021), pp. 70-98. http://geodesic.mathdoc.fr/item/INTO_2021_202_a3/