Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_202_a3, author = {M. V. Shamolin}, title = {Families of phase portraits for dynamical systems of pendulum type}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {70--98}, publisher = {mathdoc}, volume = {202}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_202_a3/} }
TY - JOUR AU - M. V. Shamolin TI - Families of phase portraits for dynamical systems of pendulum type JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 70 EP - 98 VL - 202 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_202_a3/ LA - ru ID - INTO_2021_202_a3 ER -
%0 Journal Article %A M. V. Shamolin %T Families of phase portraits for dynamical systems of pendulum type %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 70-98 %V 202 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_202_a3/ %G ru %F INTO_2021_202_a3
M. V. Shamolin. Families of phase portraits for dynamical systems of pendulum type. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 202 (2021), pp. 70-98. http://geodesic.mathdoc.fr/item/INTO_2021_202_a3/
[1] Aidagulov R. R., Shamolin M. V., “Nelokalnaya gidrodinamika i nekotorye prilozheniya”, Sovr. mat. prilozh., 100 (2016), 145–169
[2] Andreev A. V., Shamolin M. V., “Modelirovanie vozdeistviya sredy na telo konicheskoi formy i semeistva fazovykh portretov v prostranstve kvaziskorostei”, Prikl. mekh. tekhn. fiz., 56:4 (2015), 85–91 | Zbl
[3] Bendikson I., “O krivykh, opredelyaemykh differentsialnymi uravneniyami”, Usp. mat. nauk., 9 (1941), 119–211
[4] Bryuno A. D., Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, Nauka, M., 1979
[5] Burbaki N., Integrirovanie, Nauka, M., 1970 | MR
[6] Golubev V. V., Lektsii po integrirovaniyu uravnenii dvizheniya tyazhelogo tverdogo tela okolo nepodvizhnoi tochki, Gostekhizdat, M.-L., 1953 | MR
[7] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979 | MR
[8] Kozlov V. V., Metody kachestvennogo analiza v dinamike tverdogo tela, Izd-vo MGU, M., 1980
[9] Kozlov V. V., “K zadache o padenii tyazhelogo tverdogo tela v soprotivlyayuscheisya srede”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1990, no. 1, 79–87
[10] Lokshin B. Ya., Samsonov V. A., Shamolin M. V., “Mayatnikovye sistemy s dinamicheskoi simmetriei”, Sovr. mat. prilozh., 100 (2016), 76–133
[11] Okunev Yu. M., Shamolin M. V., “Ob integriruemosti v elementarnykh funktsiyakh nekotorykh klassov kompleksnykh neavtonomnykh uravnenii”, Sovr. mat. prilozh., 65 (2009), 121–130
[12] Puankare A., O krivykh, opredelyaemykh differentsialnymi uravneniyami, OGIZ, M.-L., 1947
[13] Samsonov V. A., Shamolin M. V., “K zadache o dvizhenii tela v soprotivlyayuscheisya srede”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1989, no. 3, 51–54 | Zbl
[14] Tabachnikov V. G., “Statsionarnye kharakteristiki krylev na malykh skorostyakh vo vsem diapazone uglov ataki”, Tr. TsAGI., 1974, no. 1621, 18–24
[15] Tikhonov A. A., “Metod upravleniya dlya uglovoi stabilizatsii elektrodinamicheskoi trosovoi sistemy”, Avtomat. telemekh., 2020, no. 2, 91–114 | Zbl
[16] Trofimov V. V., Shamolin M. V., “Geometricheskie i dinamicheskie invarianty integriruemykh gamiltonovykh i dissipativnykh sistem”, Fundam. prikl. mat., 16:4 (2010), 3–229
[17] Chaplygin S. A., “O dvizhenii tyazhelykh tel v neszhimaemoi zhidkosti”, Poln. sobr. soch. T. 1, Izd-vo AN SSSR, L., 1933, 133–135
[18] Chaplygin S. A., Izbrannye trudy, Nauka, M., 1976 | MR
[19] Shabat B. V., Vvedenie v kompleksnyi analiz, Nauka, M., 1987
[20] Shamolin M. V., “K zadache o dvizhenii tela v srede s soprotivleniem”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1992, no. 1, 52–58 | MR | Zbl
[21] Shamolin M. V., “Zamknutye traektorii razlichnogo topologicheskogo tipa v zadache o dvizhenii tela v srede s soprotivleniem”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1992, no. 2, 52–56 | MR | Zbl
[22] Shamolin M. V., “Klassifikatsiya fazovykh portretov v zadache o dvizhenii tela v soprotivlyayuscheisya srede pri nalichii lineinogo dempfiruyuschego momenta”, Prikl. mat. mekh., 57:4 (1993), 40–49 | MR | Zbl
[23] Shamolin M. V., “Primenenie metodov topograficheskikh sistem Puankare i sistem sravneniya v nekotorykh konkretnykh sistemakh differentsialnykh uravnenii”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1993, no. 2, 66–70 | MR | Zbl
[24] Shamolin M. V., “Suschestvovanie i edinstvennost traektorii, imeyuschikh v kachestve predelnykh mnozhestv beskonechno udalennye tochki, dlya dinamicheskikh sistem na ploskosti”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1993, no. 1, 68–71 | MR
[25] Shamolin M. V., “Novoe dvuparametricheskoe semeistvo fazovykh portretov v zadache o dvizhenii tela v srede”, Dokl. RAN., 337:5 (1994), 611–614 | Zbl
[26] Shamolin M. V., “Vvedenie v zadachu o tormozhenii tela v soprotivlyayuscheisya srede i novoe dvukhparametricheskoe semeistvo fazovykh portretov”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1996, no. 4, 57–69 | MR | Zbl
[27] Shamolin M. V., “Mnogoobrazie tipov fazovykh portretov v dinamike tverdogo tela, vzaimodeistvuyuschego s soprotivlyayuscheisya sredoi”, Dokl. RAN., 349:2 (1996), 193–197 | MR | Zbl
[28] Shamolin M. V., “Opredelenie otnositelnoi grubosti i dvuparametricheskoe semeistvo fazovykh portretov v dinamike tverdogo tela”, Usp. mat. nauk., 51:1 (1996), 175–176 | MR | Zbl
[29] Shamolin M. V., “Prostranstvennye topograficheskie sistemy Puankare i sistemy sravneniya”, Usp. mat. nauk., 52:3 (1997), 177–178 | MR | Zbl
[30] Shamolin M. V., “Semeistvo portretov s predelnymi tsiklami v ploskoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Izv. RAN. Mekh. tv. tela., 1998, no. 6, 29–37
[31] Shamolin M. V., “O grubosti dissipativnykh sistem i otnositelnoi grubosti i negrubosti sistem s peremennoi dissipatsiei”, Usp. mat. nauk., 54:5 (1999), 181–182 | MR | Zbl
[32] Shamolin M. V., “Novoe semeistvo fazovykh portretov v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Dokl. RAN., 371:4 (2000), 480–483
[33] Shamolin M. V., “Ob integrirovanii nekotorykh klassov nekonservativnykh sistem”, Usp. mat. nauk., 57:1 (2002), 169–170 | MR
[34] Shamolin M. V., “Sopostavlenie integriruemykh po Yakobi sluchaev ploskogo i prostranstvennogo dvizheniya tela v srede pri struinom obtekanii”, Prikl. mat. mekh., 69:6 (2005), 1003–1010 | MR | Zbl
[35] Shamolin M. V., “Sluchai polnoi integriruemosti v dinamike na kasatelnom rassloenii dvumernoi sfery”, Usp. mat. nauk., 62:5 (2007), 169–170 | MR | Zbl
[36] Shamolin M. V., “Dinamicheskie sistemy s peremennoi dissipatsiei: podkhody, metody, prilozheniya”, Fundam. prikl. mat., 14:3 (2008), 3–237
[37] Shamolin M. V., “Ob integriruemosti v elementarnykh funktsiyakh nekotorykh klassov dinamicheskikh sistem”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 2008, no. 3, 43–49 | Zbl
[38] Shamolin M. V., “Trekhparametricheskoe semeistvo fazovykh portretov v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Dokl. RAN., 418:1 (2008), 46–51 | MR | Zbl
[39] Shamolin M. V., “Novye sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela”, Dokl. RAN., 431:3 (2010), 339–343 | MR | Zbl
[40] Shamolin M. V., “Mnogoparametricheskoe semeistvo fazovykh portretov v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 2011, no. 3, 24–30 | Zbl
[41] Shamolin M. V., “Nekotorye voprosy kachestvennoi teorii v dinamike sistem s peremennoi dissipatsiei”, Sovr. mat. prilozh., 78 (2012), 138–147
[42] Shamolin M. V., “Novyi sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi, pri uchete lineinogo dempfirovaniya”, Dokl. RAN., 442:4 (2012), 479–481 | MR
[43] Shamolin M. V., “Novyi sluchai integriruemosti uravnenii dinamiki na kasatelnom rassloenii k trekhmernoi sfere”, Usp. mat. nauk., 68:5 (413) (2013), 185–186 | MR | Zbl
[44] Shamolin M. V., “Voprosy kachestvennogo analiza pri modelirovanii dvizheniya tverdogo tela v soprotivlyayuscheisya srede”, Sovr. mat. prilozh., 98 (2015), 106–142
[45] Shamolin M. V., “Modelirovanie dvizheniya tverdogo tela v soprotivlyayuscheisya srede i analogii s vikhrevymi dorozhkami”, Mat. model., 27:1 (2015), 33–53 | MR | Zbl
[46] Shamolin M. V., “K zadache o svobodnom tormozhenii tverdogo tela v soprotivlyayuscheisya srede”, Prikl. mekh. tekhn. fiz., 57:4 (2016), 43–56 | Zbl
[47] Shamolin M. V., “Transtsendentnye pervye integraly dinamicheskikh sistem na kasatelnom rassloenii k sfere”, Sovr. mat. prilozh., 100 (2016), 58–75
[48] Shamolin M. V., “Avtokolebaniya pri tormozhenii tverdogo tela v soprotivlyayuscheisya srede”, Sib. zh. industr. mat., 20:4 (72) (2017), 90–102 | Zbl
[49] Shamolin M. V., “Fazovye portrety dinamicheskikh uravnenii dvizheniya tverdogo tela v soprotivlyayuscheisya srede”, Itogi nauki i tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 135, 94–122 | MR
[50] Shamolin M. V., “Otnositelnaya strukturnaya ustoichivost i neustoichivost razlichnykh stepenei v sistemakh s dissipatsiei”, Probl. mat. anal., 2019, no. 97, 167–178 | Zbl
[51] Errousmit D., Pleis K., Obyknovennye differentsialnye uravneniya. Kachestvennaya teoriya s prilozheniyami, Mir, M., 1986
[52] Aleksandrov A. Yu., Aleksandrova E. B., Tikhonov A. A., “On the monoaxial stabilization of a rigid body under vanishing restoring torque”, AIP Conf. Proc., 1959 (2018), 080001 | DOI | MR
[53] Tikhonov A. A., Yakovlev A. B., “On dependence of equilibrium characteristics of the space tethered system on environmental parameters”, Int. J. Plasma Env. Sci. Techn., 13:1, 49–52 | MR