Integrable homogeneous dynamical systems with dissipation on the tangent bundle of a two-dimensional manifold
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 202 (2021), pp. 43-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

In many problems of dynamics, position spaces of systems considered are two-dimensional manifolds; the phase spaces of these systems are the tangent bundles of the corresponding manifolds. For example, the study of a spatial pendulum on a spherical hinge in a flow of a medium leads to a dynamical system on the tangent bundle of the two-dimensional sphere; in this case, a metric of a special form on the sphere is induced by an additional symmetry group. In such cases, dynamical systems have variable dissipation, and the complete list of first integrals consists of transcendental functions expressed as finite combinations of elementary functions. For problems on the motion of a point on a two-dimensional surface, the metric on the surface is induced by the Euclidean metric of the ambient space. In this paper, we prove the integrability of more general classes of homogeneous dynamical systems on tangent bundles of two-dimensional manifolds that involve force fields with variable dissipation.
Keywords: dynamical system, nonconservative force field, integrability, transcendental first integral.
@article{INTO_2021_202_a2,
     author = {M. V. Shamolin},
     title = {Integrable homogeneous dynamical systems with dissipation on the tangent bundle of a two-dimensional manifold},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {43--69},
     publisher = {mathdoc},
     volume = {202},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_202_a2/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Integrable homogeneous dynamical systems with dissipation on the tangent bundle of a two-dimensional manifold
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 43
EP  - 69
VL  - 202
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_202_a2/
LA  - ru
ID  - INTO_2021_202_a2
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Integrable homogeneous dynamical systems with dissipation on the tangent bundle of a two-dimensional manifold
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 43-69
%V 202
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_202_a2/
%G ru
%F INTO_2021_202_a2
M. V. Shamolin. Integrable homogeneous dynamical systems with dissipation on the tangent bundle of a two-dimensional manifold. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 202 (2021), pp. 43-69. http://geodesic.mathdoc.fr/item/INTO_2021_202_a2/

[1] Aidagulov R. R., Shamolin M. V., “Arkhimedovy ravnomernye struktury”, Sovr. mat. Fundam. napr., 23 (2007), 46–51

[2] Aidagulov R. R., Shamolin M. V., “Mnogoobraziya nepreryvnykh struktur”, Sovr. mat. Fundam. napr., 23 (2007), 71–86

[3] Bendikson I., “O krivykh, opredelyaemykh differentsialnymi uravneniyami”, Usp. mat. nauk., 9 (1941), 119–211

[4] Bogoyavlenskii O. I., “Dinamika tverdogo tela s $n$ ellipsoidalnymi polostyami, zapolnennymi magnitnoi zhidkostyu”, Dokl. AN SSSR., 272:6 (1983), 1364–1367 | MR | Zbl

[5] Bogoyavlenskii O. I., “Nekotorye integriruemye sluchai uravnenii Eilera”, Dokl. AN SSSR., 287:5 (1986), 1105–1108 | MR

[6] Burbaki N., Integrirovanie, Nauka, M., 1970 | MR

[7] Veselov A. P., “Ob usloviyakh integriruemosti uravnenii Eilera na $\textrm{so}(4)$”, Dokl. AN SSSR., 270:6 (1983), 1298–1300 | MR | Zbl

[8] Georgievskii D. V., Shamolin M. V., “Kinematika i geometriya mass tverdogo tela s nepodvizhnoi tochkoi v $\mathbb{R}^{n}$”, Dokl. RAN., 380:1 (2001), 47–50

[9] Georgievskii D. V., Shamolin M. V., “Obobschennye dinamicheskie uravneniya Eilera dlya tverdogo tela s nepodvizhnoi tochkoi v $\mathbf{R}^{n}$”, Dokl. RAN., 383:5 (2002), 635–637

[10] Georgievskii D. V., Shamolin M. V., “Pervye integraly uravnenii dvizheniya obobschennogo giroskopa v $\mathbb{R}^{n}$”, Vestn. MGU. Ser. 1. Mat. Mekh., 2003, no. 5, 37–41 | Zbl

[11] Georgievskii D. V., Shamolin M. V., “Simvoly Levi-Chivity, obobschennye vektornye proizvedeniya i novye sluchai integriruemosti v mekhanike mnogomernogo tela”, Sovr. mat. prilozh., 76 (2012), 22–39

[12] Golubev V. V., Lektsii po integrirovaniyu uravnenii dvizheniya tyazhelogo tverdogo tela okolo nepodvizhnoi tochki, Gostekhizdat, M.-L., 1953 | MR

[13] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979 | MR

[14] Eroshin V. A., Samsonov V. A., Shamolin M. V., “Modelnaya zadacha o tormozhenii tela v soprotivlyayuscheisya srede pri struinom obtekanii”, Izv. RAN. Mekh. zhidk. gaza., 1995, no. 3, 23–27

[15] Ivanova T. A., “Ob uravneniyakh Eilera v modelyakh teoreticheskoi fiziki”, Mat. zametki., 52:2 (1992), 43–51

[16] Kozlov V. V., “Integriruemost i neintegriruemost v gamiltonovoi mekhanike”, Usp. mat. nauk., 38:1 (1983), 3–67 | MR | Zbl

[17] Kozlov V. V., “Ratsionalnye integraly kvaziodnorodnykh dinamicheskikh sistem”, Prikl. mat. mekh., 79:3 (2015), 307–316 | Zbl

[18] Lokshin B. Ya., Samsonov V. A., Shamolin M. V., “Mayatnikovye sistemy s dinamicheskoi simmetriei”, Sovr. mat. prilozh., 100 (2016), 76–133

[19] Manakov S. V., “Zamechanie ob integrirovanii uravnenii Eilera dinamiki $n$-mernogo tverdogo tela”, Funkts. anal. prilozh., 10:4 (1976), 93–94 | MR | Zbl

[20] Pokhodnya N.V., Shamolin M. V., “Novyi sluchai integriruemosti v dinamike mnogomernogo tela”, Vestn. Samarsk. un-ta. Estestvennonauch. ser., 2012, no. 9 (100), 136–150 | Zbl

[21] Pokhodnya N. V., Shamolin M. V., “Nekotorye usloviya integriruemosti dinamicheskikh sistem v transtsendentnykh funktsiyakh”, Vestn. Samarsk. un-ta. Estestvennonauch. ser., 2013, no. 9/1 (110), 35–41 | Zbl

[22] Pokhodnya N. V., Shamolin M. V., “Integriruemye sistemy na kasatelnom rassloenii k mnogomernoi sfere”, Vestn. Samarsk. un-ta. Estestvennonauch. ser., 2014, no. 7 (118), 60–69 | Zbl

[23] Samsonov V. A., Shamolin M. V., “K zadache o dvizhenii tela v soprotivlyayuscheisya srede”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1989, no. 3, 51–54 | Zbl

[24] Tikhonov A. A., “Metod upravleniya dlya uglovoi stabilizatsii elektrodinamicheskoi trosovoi sistemy”, Avtomat. telemekh., 2020, no. 2, 91–114 | Zbl

[25] Trofimov V. V., “Uravneniya Eilera na konechnomernykh razreshimykh gruppakh Li”, Izv. AN SSSR. Ser. mat., 44:5 (1980), 1191–1199 | MR | Zbl

[26] Trofimov V. V., Fomenko A. T., “Metodika postroeniya gamiltonovykh potokov na simmetricheskikh prostranstvakh i integriruemost nekotorykh gidrodinamicheskikh sistem”, Dokl. AN SSSR., 254:6 (1980), 1349–1353 | MR

[27] Trofimov V. V., Shamolin M. V., “Geometricheskie i dinamicheskie invarianty integriruemykh gamiltonovykh i dissipativnykh sistem”, Fundam. prikl. mat., 16:4 (2010), 3–229

[28] Chaplygin S. A., “O dvizhenii tyazhelykh tel v neszhimaemoi zhidkosti”, Poln. sobr. soch. T. 1, Izd-vo AN SSSR, L., 1933, 133–135

[29] Shabat B. V., Vvedenie v kompleksnyi analiz, Nauka, M., 1987

[30] Shamolin M. V., “K zadache o dvizhenii tela v srede s soprotivleniem”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1992, no. 1, 52–58 | MR | Zbl

[31] Shamolin M. V., “Klassifikatsiya fazovykh portretov v zadache o dvizhenii tela v soprotivlyayuscheisya srede pri nalichii lineinogo dempfiruyuschego momenta”, Prikl. mat. mekh., 57:4 (1993), 40–49 | MR | Zbl

[32] Shamolin M. V., “Vvedenie v zadachu o tormozhenii tela v soprotivlyayuscheisya srede i novoe dvukhparametricheskoe semeistvo fazovykh portretov”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1996, no. 4, 57–69 | MR | Zbl

[33] Shamolin M. V., “Ob integriruemom sluchae v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Izv. RAN. Mekh. tv. tela., 1997, no. 2, 65–68

[34] Shamolin M. V., “Ob integriruemosti v transtsendentnykh funktsiyakh”, Usp. mat. nauk., 53:3 (1998), 209–210 | MR | Zbl

[35] Shamolin M. V., “Novye integriruemye po Yakobi sluchai v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Dokl. RAN., 364:5, 627–629 | MR | Zbl

[36] Shamolin M. V., “Integriruemost po Yakobi v zadache o dvizhenii chetyrekhmernogo tverdogo tela v soprotivlyayuscheisya srede”, Dokl. RAN., 375:3 (2000), 343–346

[37] Shamolin M. V., “Ob integrirovanii nekotorykh klassov nekonservativnykh sistem”, Usp. mat. nauk., 57:1 (2002), 169–170 | MR

[38] Shamolin M. V., “Ob odnom integriruemom sluchae uravnenii dinamiki na $\textrm{so}(4)\times\mathbf{R}^{4}$”, Usp. mat. nauk., 60:6 (2005), 233–234 | MR | Zbl

[39] Shamolin M. V., “Sopostavlenie integriruemykh po Yakobi sluchaev ploskogo i prostranstvennogo dvizheniya tela v srede pri struinom obtekanii”, Prikl. mat. mekh., 69:6 (2005), 1003–1010 | MR | Zbl

[40] Shamolin M. V., “Sluchai polnoi integriruemosti v dinamike na kasatelnom rassloenii dvumernoi sfery”, Usp. mat. nauk., 62:5 (2007), 169–170 | MR | Zbl

[41] Shamolin M. V., “Dinamicheskie sistemy s peremennoi dissipatsiei: podkhody, metody, prilozheniya”, Fundam. prikl. mat., 14:3 (2008), 3–237

[42] Shamolin M. V., “Novye sluchai polnoi integriruemosti v dinamike dinamicheski simmetrichnogo chetyrekhmernogo tverdogo tela v nekonservativnom pole”, Dokl. RAN., 425:3 (2009), 338–342 | MR | Zbl

[43] Shamolin M. V., “Sluchai polnoi integriruemosti v dinamike chetyrekhmernogo tverdogo tela v nekonservativnom pole”, Usp. mat. nauk., 65:1 (2010), 189–190 | MR | Zbl

[44] Shamolin M. V., “Novyi sluchai integriruemosti v dinamike chetyrekhmernogo tverdogo tela v nekonservativnom pole”, Dokl. RAN., 437:2 (2011), 190–193 | MR

[45] Shamolin M. V., “Polnyi spisok pervykh integralov v zadache o dvizhenii chetyrekhmernogo tverdogo tela v nekonservativnom pole pri nalichii lineinogo dempfirovaniya”, Dokl. RAN., 440:2 (2011), 187–190 | MR

[46] Shamolin M. V., “Novyi sluchai integriruemosti v dinamike chetyrekhmernogo tverdogo tela v nekonservativnom pole pri nalichii lineinogo dempfirovaniya”, Dokl. RAN., 444:5 (2012), 506–509 | MR

[47] Shamolin M. V., “Novyi sluchai integriruemosti v dinamike mnogomernogo tverdogo tela v nekonservativnom pole”, Dokl. RAN., 453:1 (2013), 46–49 | MR

[48] Shamolin M. V., “Novyi sluchai integriruemosti uravnenii dinamiki na kasatelnom rassloenii k trekhmernoi sfere”, Usp. mat. nauk., 68:5 (413) (2013), 185–186 | MR | Zbl

[49] Shamolin M. V., “Polnyi spisok pervykh integralov dinamicheskikh uravnenii dvizheniya chetyrekhmernogo tverdogo tela v nekonservativnom pole pri nalichii lineinogo dempfirovaniya”, Dokl. RAN., 449:4 (2013), 416–419 | MR

[50] Shamolin M. V., “Novyi sluchai integriruemosti v dinamike mnogomernogo tverdogo tela v nekonservativnom pole pri uchete lineinogo dempfirovaniya”, Dokl. RAN., 457:5 (2014), 542–545 | MR

[51] Shamolin M. V., “Integriruemye sistemy s peremennoi dissipatsiei na kasatelnom rassloenii k mnogomernoi sfere i prilozheniya”, Fundam. prikl. mat., 20:4 (2015), 3–231

[52] Shamolin M. V., “Polnyi spisok pervykh integralov dinamicheskikh uravnenii dvizheniya mnogomernogo tverdogo tela v nekonservativnom pole”, Dokl. RAN., 461:5 (2015), 533–536 | MR

[53] Shamolin M. V., “Polnyi spisok pervykh integralov uravnenii dvizheniya mnogomernogo tverdogo tela v nekonservativnom pole pri nalichii lineinogo dempfirovaniya”, Dokl. RAN., 464:6 (2015), 688–692. | MR

[54] Shamolin M. V., “Integriruemye nekonservativnye dinamicheskie sistemy na kasatelnom rassloenii k mnogomernoi sfere”, Differ. uravn., 52:6 (2016), 743–759 | Zbl

[55] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii dvumernogo mnogoobraziya”, Dokl. RAN., 475:5 (2017), 519–523 | MR

[56] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii k mnogomernoi sfere”, Dokl. RAN., 474:2 (2017), 177–181 | MR

[57] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii trekhmernogo mnogoobraziya”, Dokl. RAN., 477:2 (2017), 168–172 | MR

[58] Shamolin M. V., “Integriruemye dinamicheskie sistemy s konechnym chislom stepenei svobody s dissipatsiei”, Probl. mat. anal., 2018, no. 95, 79–101 | MR | Zbl

[59] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii mnogomernogo mnogoobraziya”, Dokl. RAN., 482:5 (2018), 527–533 | MR

[60] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii chetyrekhmernogo mnogoobraziya”, Dokl. RAN., 479:3 (2018), 270–276 | MR

[61] Shamolin M. V., Integriruemye dinamicheskie sistemy s dissipatsiei. Kn. 1: Tverdoe telo v nekonservativnom pole, LENAND, M., 2019

[62] Aleksandrov A. Yu., Aleksandrova E. B., Tikhonov A. A., “On the monoaxial stabilization of a rigid body under vanishing restoring torque”, AIP Conf. Proc., 1959 (2018), 080001 | DOI | MR

[63] Tikhonov A. A., Yakovlev A. B., “On dependence of equilibrium characteristics of the space tethered system on environmental parameters”, Int. J. Plasma Env. Sci. Techn., 13:1, 49–52 | MR