Application of the Kovacic algorithm to the study of the motion of a heavy rigid body with a fixed point in the Hess case
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 202 (2021), pp. 10-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1890, W. Hess found a new particular case of the integrable Euler–Poisson equations of the motion of a heavy rigid body with a fixed point. In 1892, P. A. Nekrasov proved that the solution of the problem of the motion of a heavy rigid body with a fixed point under the Hess conditions can be reduced to integrating a second-order linear equation with variable coefficients. In this paper, we derive the corresponding second-order equation and reduce its coefficients to the rational form. Then, using the Kovacic algorithm, we examine the existence of Liouville solutions of the corresponding second-order linear equation. We prove that Liouville solutions can exist only in two cases: in the case corresponding to the Lagrange case of the motion of a rigid body with a fixed point and in the case where the area integral is equal to zero.
Keywords: body with a fixed point, Hess case, Kovacic algorithm.
Mots-clés : Liouville solution
@article{INTO_2021_202_a1,
     author = {A. S. Kuleshov},
     title = {Application of the {Kovacic} algorithm to the study of the motion of a heavy rigid body with a fixed point in the {Hess} case},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {10--42},
     publisher = {mathdoc},
     volume = {202},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_202_a1/}
}
TY  - JOUR
AU  - A. S. Kuleshov
TI  - Application of the Kovacic algorithm to the study of the motion of a heavy rigid body with a fixed point in the Hess case
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 10
EP  - 42
VL  - 202
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_202_a1/
LA  - ru
ID  - INTO_2021_202_a1
ER  - 
%0 Journal Article
%A A. S. Kuleshov
%T Application of the Kovacic algorithm to the study of the motion of a heavy rigid body with a fixed point in the Hess case
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 10-42
%V 202
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_202_a1/
%G ru
%F INTO_2021_202_a1
A. S. Kuleshov. Application of the Kovacic algorithm to the study of the motion of a heavy rigid body with a fixed point in the Hess case. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 202 (2021), pp. 10-42. http://geodesic.mathdoc.fr/item/INTO_2021_202_a1/

[1] Appelrot G. G., “Po povodu memuara S. V. Kovalevskoi «Sur le problème de la rotation d'un corps solide autour d'un point fixe»”, Mat. sb., 16:3 (1892), 483–507 | MR

[2] Arkhangelskii Yu. A., Analiticheskaya dinamika tverdogo tela, Nauka, M., 1977 | MR

[3] Bukhgolts N. N., Osnovnoi kurs teoreticheskoi mekhaniki. T. 2, Nauka, M., 1966

[4] Gashenenko I. N., “Kinematicheskoe predstavlenie po Puanso dvizheniya tela v sluchae Gessa”, Mekh. tv. tela., 40 (2010), 12–20

[5] Zaitsev V. F., Polyanin A. D., Spravochnik po obyknovennym differentsialnym uravneniyam, Fizmatlit, M., 2001 | MR

[6] Zhukovskii N. E., “Loksodromicheskii mayatnik Gessa”, Tr. Otd. fiz. nauk O-va lyubitelei estestvoznaniya, antropologii i etnografii., 5:2 (1893), 37–45

[7] Kovalev A. M., “Podvizhnyi godograf uglovoi skorosti v reshenii Gessa zadachi o dvizhenii tela, imeyuschego nepodvizhnuyu tochku”, Prikl. mat. mekh., 32:6 (1968), 1111–1118 | Zbl

[8] Kovalev A. M., “O dvizhenii tela v sluchae Gessa”, Mekh. tv. tela., 1 (1969), 12–27

[9] Kovalev A. M., Kirichenko V. V., “Godograf vektora kineticheskogo momenta v reshenii Gessa”, Mekh. tv. tela., 34 (2004), 9–20

[10] Kozlov V. V., Metody kachestvennogo analiza v dinamike tverdogo tela, Izd-vo MGU, M., 1980

[11] Mlodzeevskii B. K., Nekrasov P. A., “Ob usloviyakh suschestvovaniya asimptoticheskikh periodicheskikh dvizhenii v zadache Gessa”, Tr. Otd. fiz. nauk O-va lyubitelei estestvoznaniya, antropologii i etnografii., 6:1 (1893), 43–52

[12] Nekrasov P. A., “K zadache o dvizhenii tyazhelogo tverdogo tela okolo nepodvizhnoi tochki”, Mat. sb., 16:2 (1892), 508–517 | Zbl

[13] Nekrasov P. A., “Analiticheskoe issledovanie odnogo sluchaya dvizheniya tyazhelogo tverdogo tela okolo nepodvizhnoi tochki”, Mat. sb., 18:2 (1896), 161–274

[14] Novikov M. A., “O statsionarnykh dvizheniyakh tverdogo tela pri suschestvovanii chastnogo integrala Gessa”, Izv. RAN. Mekh. tv. tela., 2018, no. 3, 28–37 | MR

[15] Kharlamov P. V. Kinematicheskoe istolkovanie dvizheniya tela, imeyuschego nepodvizhnuyu tochku, Prikl. mat. mekh., 28:3 (1964), 502–507 | Zbl

[16] Kharlamov P. V., Lektsii po dinamike tverdogo tela, Izd-vo NGU, Novosibirsk, 1965

[17] Hess W., “Über die Euler'schen Bewegungsgleichungen und über eine neue partikuläre Lösung des Problems der Bewegung eines starren Körpers um einen festen Punkt”, Math. Ann., 37:2 (1890), 153–181 | DOI | MR

[18] Kovacic J., “An algorithm for solving second order linear homogeneous differential equations”, J. Symb. Comput., 2 (1986), 3–43 | DOI | MR | Zbl

[19] Kowalevski S., “Sur le probleme de la rotation d'un corps solide autour d'un point fixe”, Acta Math., 12:1 (1889), 177–232 | DOI | MR

[20] Kowalevski S., “Sur une propriété du systéme d'équations différentielles qui définit la rotation d'un corps solide autour d'un point fixe”, Acta Math., 14:1 (1890), 81–93 | DOI | MR

[21] Liouville R., “Sur la rotation des solides”, C. R. Acad. Sci., 120:17 (1895), 903–906