Cardinal and topological properties of the space of symmetric degree
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations, geometry, and topology, Tome 201 (2021), pp. 107-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss cardinal and topological properties of the space of symmetric degree such as the weight, the character, the locally weak density, the tightness, and the separation axioms.
Keywords: factor topology, open mapping, tightness, weight, character, locally weak density.
@article{INTO_2021_201_a9,
     author = {R. B. Beshimov and R. M. Juraev},
     title = {Cardinal and topological properties of the space of symmetric degree},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {107--122},
     publisher = {mathdoc},
     volume = {201},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_201_a9/}
}
TY  - JOUR
AU  - R. B. Beshimov
AU  - R. M. Juraev
TI  - Cardinal and topological properties of the space of symmetric degree
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 107
EP  - 122
VL  - 201
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_201_a9/
LA  - ru
ID  - INTO_2021_201_a9
ER  - 
%0 Journal Article
%A R. B. Beshimov
%A R. M. Juraev
%T Cardinal and topological properties of the space of symmetric degree
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 107-122
%V 201
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_201_a9/
%G ru
%F INTO_2021_201_a9
R. B. Beshimov; R. M. Juraev. Cardinal and topological properties of the space of symmetric degree. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations, geometry, and topology, Tome 201 (2021), pp. 107-122. http://geodesic.mathdoc.fr/item/INTO_2021_201_a9/

[1] Malykhin V. I., “O tesnote i chisle Suslina v proizvedenii prostranstv”, Dokl. AN SSSR., 203 (1972), 1001–1003

[2] Fedorchuk V. V., Filippov V. V., Topologiya giperprostranstv i ee prilozheniya, Znanie, M., 1989

[3] Engelking R., Obschaya topologiya, Mir, M., 1986

[4] Beshimov R. B., “Some cardinal properties of topological space connected with weakly density”, Meth. Funct. Anal. Topol., 10:3 (2004), 17–22 | MR | Zbl

[5] Beshimov R. B., “On some cardinal invariants of hyperspaces”, Math. Stud., 24:2 (2005), 197–202 | MR | Zbl

[6] Beshimov R. B., Mukhamadiev F. G., Zhuraev R. M., “Cardinal properties of the space of permutation degree”, Tashkent State Pedagogical Univ. Sci. Inform., 2 (2014), 76–83

[7] Beshimov R. B., Mukhamadiev F. G., Mamadaliev N. K., “The local density and the local weak density of hyperspaces”, Int. J. Geom., 4:1 (2015), 42–49 | Zbl

[8] Beshimov R. B., Safarova D. T., “Normal functors and Aleksandrov's two arrows”, Caspian J. Appl. Math. Ecology and Economics., 1:2 (2013), 50–59

[9] Fucai Lin, Chuan Liu, “The $k$-spaces property of the free Abelian topological groups over non-metrizable Lašnev spaces”, Topol. Appl., 220 (2017), 31–42 | DOI | Zbl

[10] Mukhamadiev F., “Some cardinal and topological properties of the $n$-permutation degree of a topological spaces and locally $\tau$-density of hyperspaces”, Bull. Natl. Univ. of Uzbekistan. Math. Natural Sci., 1:1 (2018), 30–35 | MR