Local $\tau$-density of the sum and the superextension of topological spaces
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations, geometry, and topology, Tome 201 (2021), pp. 103-106
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we study the density and the local density of the superextension of topological spaces. We prove that if $X_{\alpha}$ is a locally $\tau$-dense space for each $\alpha\in A$, then $X=\bigoplus \{X_{\alpha}: \alpha\in A\}$ is also a locally $\tau$-dense space. We also prove that for any infinite $T_{1}$-space, the inequality $ld(\lambda_{c}X)\le ld(X) $ is always valid.
Keywords:
topological space, local density, separability, superextension, cardinal number.
@article{INTO_2021_201_a8,
author = {F. G. Mukhamadiev},
title = {Local $\tau$-density of the sum and the superextension of topological spaces},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {103--106},
year = {2021},
volume = {201},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2021_201_a8/}
}
TY - JOUR AU - F. G. Mukhamadiev TI - Local $\tau$-density of the sum and the superextension of topological spaces JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 103 EP - 106 VL - 201 UR - http://geodesic.mathdoc.fr/item/INTO_2021_201_a8/ LA - ru ID - INTO_2021_201_a8 ER -
%0 Journal Article %A F. G. Mukhamadiev %T Local $\tau$-density of the sum and the superextension of topological spaces %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 103-106 %V 201 %U http://geodesic.mathdoc.fr/item/INTO_2021_201_a8/ %G ru %F INTO_2021_201_a8
F. G. Mukhamadiev. Local $\tau$-density of the sum and the superextension of topological spaces. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations, geometry, and topology, Tome 201 (2021), pp. 103-106. http://geodesic.mathdoc.fr/item/INTO_2021_201_a8/
[1] Beshimov R. B., “O slaboi plotnosti topologicheskikh prostranstv”, Dokl. AN RUz., 11 (2000), 10–13 | MR
[2] Makhmud T., Kardinalnoznachnye invarianty prostranstv stseplennykh sistem, Diss. na soisk. uch. step. kand. fiz.-mat. nauk, MGU, M., 1993
[3] Fedorchuk V. V., Filippov V. V., Obschaya topologiya. Osnovnye konstruktsii, Fizmatlit, M., 2006
[4] Engelking R., Obschaya topologiya, Mir, M., 1986
[5] Beshimov R. B., Mukhamadiev F. G., Mamadaliev N. K., “The local density and the local weak density of hyperspaces”, Int. J. Geom., 4:1 (2015), 42–49 | Zbl
[6] Van Mill J., Supercompactness and Wallman Spaces, Amsterdam, 1977 | Zbl