Asymptotic solution of the Neumann problem with an irregular singular point
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations, geometry, and topology, Tome 201 (2021), pp. 98-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the generalized method of boundary-layer functions, we construct a complete uniform asymptotic expansion of the solution of a singularly perturbed Neumann problem for a second order, linear, inhomogeneous ordinary differential equation in the case where the corresponding unperturbed equation has an irregular singular point on the boundary of the segment.
Keywords: Neumann problem, asymptotic solution, boundary-layer function, bisingular problem, irregular singular point, generalized method of boundary-layer functions
Mots-clés : singular perturbation.
@article{INTO_2021_201_a7,
     author = {D. A. Tursunov and K. G. Kozhobekov},
     title = {Asymptotic solution of the {Neumann} problem with an irregular singular point},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {98--102},
     publisher = {mathdoc},
     volume = {201},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_201_a7/}
}
TY  - JOUR
AU  - D. A. Tursunov
AU  - K. G. Kozhobekov
TI  - Asymptotic solution of the Neumann problem with an irregular singular point
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 98
EP  - 102
VL  - 201
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_201_a7/
LA  - ru
ID  - INTO_2021_201_a7
ER  - 
%0 Journal Article
%A D. A. Tursunov
%A K. G. Kozhobekov
%T Asymptotic solution of the Neumann problem with an irregular singular point
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 98-102
%V 201
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_201_a7/
%G ru
%F INTO_2021_201_a7
D. A. Tursunov; K. G. Kozhobekov. Asymptotic solution of the Neumann problem with an irregular singular point. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations, geometry, and topology, Tome 201 (2021), pp. 98-102. http://geodesic.mathdoc.fr/item/INTO_2021_201_a7/

[1] \label{B} Butuzov V. F., “Asimptotika pogransloinogo resheniya statsionarnoi chastichno dissipativnoi sistemy s kratnym kornem vyrozhdennogo uravneniya”, Mat. sb., 210:11 (2019), 76–102 | MR | Zbl

[2] \label{IAM} Ilin A. M., Danilin A. R., Asimptoticheskie metody v analize, Fizmatlit, M., 2009

[3] \label{K} Kozhobekov K. G., Tursunov D. A., “Asimptotika resheniya kraevoi zadachi, kogda predelnoe uravnenie imeet neregulyarnuyu osobuyu tochku”, Vestn. Udmurt. un-ta. Mat. Mekh. Kompyut. nauki., 29:3 (2019), 332–340 | MR | Zbl

[4] \label{L} Lomov S. A., Lomov I. S., Osnovy matematicheskoi teorii pogranichnogo sloya, Izd-vo Mosk. un-ta, M., 2011

[5] \label{D1} Tursunov D. A., “Asimptoticheskoe reshenie lineinykh bisingulyarnykh zadach s dopolnitelnym pogranichnym sloem”, Izv. vuzov. Mat., 3 (2018), 70–78 | Zbl

[6] \label{D3} Tursunov D. A., “Asimptotika resheniya zadachi Koshi pri narushenii ustoichivosti tochki pokoya v ploskosti «bystrykh dvizhenii»”, Vestn. Tomsk. un-ta. Mat. Mekh., 54 (2018), 46–57

[7] \label{D2} Tursunov D. A., Alymkulov K., Azimov B. A., “Asimptotika resheniya singulyarno vozmuschennoi zadachi Dirikhle so slaboi osoboi tochkoi”, Vestn. Yuzhno-Ural. un-ta. Ser. Mat. model. program., 10:1 (2018), 21–26 | Zbl

[8] \label{Sh} Shiryaev O. B., “Asimptoticheskaya teoriya ponderomotornoi dinamiki elektrona v pole sfokusirovannogo relyativistski intensivnogo elektromagnitnogo volnovogo paketa”, Kvant. elektron., 49:10 (2019), 936–946

[9] \label{A} Alymkulov K., Tursunov D. A., Azimov B. A., “Generalized method of boundary layer function for bisingularly perturbed differential Cole equation”, Far East J. Math. Sci., 101:3 (2017), 507–516 | Zbl

[10] \label{PW} Protter M. H., Weinberger H. F., Maximum Principles in Differential Equations, Prentice Hall, New Jersey, 1967 | Zbl

[11] \label{W} Wasow W., Linear Turning Point Theory, Springer-Verlag, New York, 1985 | Zbl