Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_201_a7, author = {D. A. Tursunov and K. G. Kozhobekov}, title = {Asymptotic solution of the {Neumann} problem with an irregular singular point}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {98--102}, publisher = {mathdoc}, volume = {201}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_201_a7/} }
TY - JOUR AU - D. A. Tursunov AU - K. G. Kozhobekov TI - Asymptotic solution of the Neumann problem with an irregular singular point JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 98 EP - 102 VL - 201 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_201_a7/ LA - ru ID - INTO_2021_201_a7 ER -
%0 Journal Article %A D. A. Tursunov %A K. G. Kozhobekov %T Asymptotic solution of the Neumann problem with an irregular singular point %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 98-102 %V 201 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_201_a7/ %G ru %F INTO_2021_201_a7
D. A. Tursunov; K. G. Kozhobekov. Asymptotic solution of the Neumann problem with an irregular singular point. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations, geometry, and topology, Tome 201 (2021), pp. 98-102. http://geodesic.mathdoc.fr/item/INTO_2021_201_a7/
[1] \label{B} Butuzov V. F., “Asimptotika pogransloinogo resheniya statsionarnoi chastichno dissipativnoi sistemy s kratnym kornem vyrozhdennogo uravneniya”, Mat. sb., 210:11 (2019), 76–102 | MR | Zbl
[2] \label{IAM} Ilin A. M., Danilin A. R., Asimptoticheskie metody v analize, Fizmatlit, M., 2009
[3] \label{K} Kozhobekov K. G., Tursunov D. A., “Asimptotika resheniya kraevoi zadachi, kogda predelnoe uravnenie imeet neregulyarnuyu osobuyu tochku”, Vestn. Udmurt. un-ta. Mat. Mekh. Kompyut. nauki., 29:3 (2019), 332–340 | MR | Zbl
[4] \label{L} Lomov S. A., Lomov I. S., Osnovy matematicheskoi teorii pogranichnogo sloya, Izd-vo Mosk. un-ta, M., 2011
[5] \label{D1} Tursunov D. A., “Asimptoticheskoe reshenie lineinykh bisingulyarnykh zadach s dopolnitelnym pogranichnym sloem”, Izv. vuzov. Mat., 3 (2018), 70–78 | Zbl
[6] \label{D3} Tursunov D. A., “Asimptotika resheniya zadachi Koshi pri narushenii ustoichivosti tochki pokoya v ploskosti «bystrykh dvizhenii»”, Vestn. Tomsk. un-ta. Mat. Mekh., 54 (2018), 46–57
[7] \label{D2} Tursunov D. A., Alymkulov K., Azimov B. A., “Asimptotika resheniya singulyarno vozmuschennoi zadachi Dirikhle so slaboi osoboi tochkoi”, Vestn. Yuzhno-Ural. un-ta. Ser. Mat. model. program., 10:1 (2018), 21–26 | Zbl
[8] \label{Sh} Shiryaev O. B., “Asimptoticheskaya teoriya ponderomotornoi dinamiki elektrona v pole sfokusirovannogo relyativistski intensivnogo elektromagnitnogo volnovogo paketa”, Kvant. elektron., 49:10 (2019), 936–946
[9] \label{A} Alymkulov K., Tursunov D. A., Azimov B. A., “Generalized method of boundary layer function for bisingularly perturbed differential Cole equation”, Far East J. Math. Sci., 101:3 (2017), 507–516 | Zbl
[10] \label{PW} Protter M. H., Weinberger H. F., Maximum Principles in Differential Equations, Prentice Hall, New Jersey, 1967 | Zbl
[11] \label{W} Wasow W., Linear Turning Point Theory, Springer-Verlag, New York, 1985 | Zbl