Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_201_a6, author = {T. G. Ergashev}, title = {Expansion formulas for hypergeometric functions of two variables}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {80--97}, publisher = {mathdoc}, volume = {201}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_201_a6/} }
TY - JOUR AU - T. G. Ergashev TI - Expansion formulas for hypergeometric functions of two variables JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 80 EP - 97 VL - 201 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_201_a6/ LA - ru ID - INTO_2021_201_a6 ER -
%0 Journal Article %A T. G. Ergashev %T Expansion formulas for hypergeometric functions of two variables %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 80-97 %V 201 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_201_a6/ %G ru %F INTO_2021_201_a6
T. G. Ergashev. Expansion formulas for hypergeometric functions of two variables. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations, geometry, and topology, Tome 201 (2021), pp. 80-97. http://geodesic.mathdoc.fr/item/INTO_2021_201_a6/
[1] Beitmen A., Erdeii A., Vysshie transtsendentnye funktsii. T. 1, Nauka, M., 1973
[2] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Dopolnitelnye glavy, Nauka, M., 1986
[3] Urinov A. K., Ergashev T. G., “Konflyuentnye gipergeometricheskie funktsii mnogikh peremennykh i ikh primenenie k nakhozhdeniyu fundamentalnykh reshenii obobschennogo uravneniya Gelmgoltsa s singulyarnymi koeffitsientami”, Vestn. Tomsk. un-ta. Mat. Mekh., 55 (2018), 45–56
[4] Ergashev T. G., “Tretii potentsial dvoinogo sloya dlya obobschennogo dvuosesimmetricheskogo uravneniya Gelmgoltsa”, Ufim. mat. zh., 10:4 (2018), 111–122 | MR | Zbl
[5] Ergashev T. G., “Chetvertyi potentsial dvoinogo sloya dlya obobschennogo dvuosesimmetricheskogo uravneniya Gelmgoltsa”, Vestn. Tomsk. un-ta. Mat. Mekh., 50 (2017), 45–56
[6] Appell P. and Kampe de Feriet J., Fonctions Hypergeometriques et Hyperspheriques. Polynomes d'Hermite, Gauthier-Villars, Paris, 1926
[7] Berdyshev A. S, Hasanov A., Ergashev T. G., “Double-layer potentials for a generalized biaxially symmetric Helmholtz equation, II”, Compl. Var. Elliptic Equations., 65 (2019), 1–17
[8] Burchnall J. L., Chaundy T. W., “Expansions of Appell's double hypergeometric functions”, Q. J. Math. Oxford., 11 (1940), 249–270 | DOI | MR
[9] Burchnall J. L., Chaundy T. W., “Expansions of Appell's double hypergeometric functions, II”, Q. J. Math. Oxford., 12 (1941), 112–128 | DOI | MR
[10] Erdelyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher Transcendental Functions. Vol. I, McGraw-Hill, New York–Toronto–London, 1953 | Zbl
[11] Ergashev T. G., “On fundamental solutions for multidimensional Helmholtz equation with three singular coefficients”, Comput. Math. Appl., 77 (2019), 69–76 | MR | Zbl
[12] Ergashev T. G., Hasanov A., “Fundamental solutions of the bi-axially symmetric Helmholtz equation”, Uzbek Math. J., 1 (2018), 55–64 | DOI | Zbl
[13] Exton H., “On certain confluent hypergeometric functions of three variables”, Ganita, 21:2 (1970), 79–92 | MR | Zbl
[14] Hasanov A., “Fundamental solutions bi-axially symmetric Helmholtz equation”, Compl. Var. Elliptic Equations., 52:8 (2007), 673–683 | DOI | Zbl
[15] Horn J., “Über die Convergenz der hypergeometrischen Reihen zweier und dreier Veränderlichen”, Math. Ann., 34 (1889), 544–600 | DOI | MR
[16] Horn J., “Hypergeometrische Funktionen zweier Veränderlichen”, Math. Ann., 105 (1931), 381–407 | DOI | MR
[17] Jain R. N., “The confluent hypergeometric functions of three variables”, Proc. Natl. Acad. Sci. India Sect. A., 36 (1966), 395–408 | Zbl
[18] Karimov E. T., Nieto J. J., “The Dirichlet problem for a 3D elliptic equation with two singular coefficients”, Comput. Math. Appl., 62 (2011), 214–224 | DOI | MR | Zbl
[19] Mavlyaviev R. M., Garipov I. B., “Fundamental solution of multidimensional axisymmetric Helmholtz equation”, Compl. Var. Elliptic Equations., 62:3 (2016), 287–296 | DOI | MR
[20] Salakhitdinov M. S., Karimov E. T., “Spatial boundary problem with the Dirichlet-Neumann condition for a singular elliptic equation”, Appl. Math. Comput., 219 (2012), 3469–3476 | MR | Zbl
[21] Srivastava H. M., Hasanov A., Choi J., “Double-layer potentials for a generalized bi-axially symmetric Helmholtz equation”, Sohag J. Math., 2:1 (2015), 1–10
[22] Srivastava H. M., Karlsson P. W., Multiple Gaussian Hypergeometric Series, Halsted Press, New York, 1985 | Zbl
[23] Srivastava H. M., Manocha H. L., A Treatise on Generating Functions, Halsted Press, New York, 1984 | Zbl