Expansion formulas for hypergeometric functions of two variables
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations, geometry, and topology, Tome 201 (2021), pp. 80-97

Voir la notice de l'article provenant de la source Math-Net.Ru

In the theory of hypergeometric functions, an important role is played by expansion formulas that allows one to express hypergeometric functions of several variables as infinite sums of products of several hypergeometric functions of one variable. In this paper, for hypergeometric functions of two variables, we introduce new symbolic Burchnall–Chaundy operators, examine their properties, and construct some expansions.
Keywords: hypergeometric function, expansion formula, symbolic form, Burchnall operator, Chaundy operator.
@article{INTO_2021_201_a6,
     author = {T. G. Ergashev},
     title = {Expansion formulas for hypergeometric functions of two variables},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {80--97},
     publisher = {mathdoc},
     volume = {201},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_201_a6/}
}
TY  - JOUR
AU  - T. G. Ergashev
TI  - Expansion formulas for hypergeometric functions of two variables
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 80
EP  - 97
VL  - 201
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_201_a6/
LA  - ru
ID  - INTO_2021_201_a6
ER  - 
%0 Journal Article
%A T. G. Ergashev
%T Expansion formulas for hypergeometric functions of two variables
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 80-97
%V 201
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_201_a6/
%G ru
%F INTO_2021_201_a6
T. G. Ergashev. Expansion formulas for hypergeometric functions of two variables. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations, geometry, and topology, Tome 201 (2021), pp. 80-97. http://geodesic.mathdoc.fr/item/INTO_2021_201_a6/