On a nonlocal boundary-value problem for a mixed-type equation of the second kind
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations, geometry, and topology, Tome 201 (2021), pp. 65-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss the unique solvability of a nonlocal problem with the Poincaré condition for an equation of elliptic-hyperbolic type of the second kind, i.e., for an equation whose degeneracy line is a characteristic. We develop a new extremum principle for equations of this type. Using this extremum principle, we prove the uniqueness of the problem considered. Using functional relations, we reduce the study of the existence of a solution to the problem for a singular integral equation of the normal type. We find a class of functions that provide the solvability of the singular equation. Using the Carleman–Vekua regularization method, we reduce the singular integral equation to a Fredholm integral equation of the second kind whose solvability is established based on the uniqueness of the solution.
Keywords: elliptic-hyperbolic equation, equation of the second kind, nonlocal boundary-value problem, extremum principle, regularization method, class of generalized solutions.
@article{INTO_2021_201_a5,
     author = {B. I. Islomov and A. A. Abdullayev},
     title = {On a nonlocal boundary-value problem for a mixed-type equation of the second kind},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {65--79},
     publisher = {mathdoc},
     volume = {201},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_201_a5/}
}
TY  - JOUR
AU  - B. I. Islomov
AU  - A. A. Abdullayev
TI  - On a nonlocal boundary-value problem for a mixed-type equation of the second kind
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 65
EP  - 79
VL  - 201
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_201_a5/
LA  - ru
ID  - INTO_2021_201_a5
ER  - 
%0 Journal Article
%A B. I. Islomov
%A A. A. Abdullayev
%T On a nonlocal boundary-value problem for a mixed-type equation of the second kind
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 65-79
%V 201
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_201_a5/
%G ru
%F INTO_2021_201_a5
B. I. Islomov; A. A. Abdullayev. On a nonlocal boundary-value problem for a mixed-type equation of the second kind. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations, geometry, and topology, Tome 201 (2021), pp. 65-79. http://geodesic.mathdoc.fr/item/INTO_2021_201_a5/

[1] Abdullaev A. A., “O edinstvennosti resheniya zadachi tipa Franklya dlya uravneniya elliptiko-giperbolicheskogo tipa vtorogo roda”, Vestn. Kharkov. politekh. in-ta. Ser. Inform. model., 13 (1338) (2019), 5–12

[2] Abregov M. Kh., “Nekotorye zadachi tipa zadachi Bitsadze—Samarskogo dlya uravneniya smeshannogo tipa”, Differ. uravn., 10:1 (1974), 3–6 | MR | Zbl

[3] Algazin O. D., Kopaev A. V., “K zadache o naklonnoi proizvodnoi dlya uravneniya Lavrenteva—Bitsadze v poluploskosti”, Mat. mat. model., 2 (2016), 1–8

[4] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. T. 1, Nauka, M., 1965

[5] Bitsadze A. V., Kraevye zadachi dlya ellipticheskikh uravnenii vtorogo poryadka, Nauka, M., 1966

[6] Bitsadze A. V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981

[7] Bitsadze A. V., Samarskii A. A., “O nekotorykh prosteishikh obobscheniyakh lineinykh ellipticheskikh kraevykh zadach”, Dokl. AN SSSR., 185:4 (1969), 739–740 | Zbl

[8] Vostrova L. K., “Smeshannaya kraevaya zadachi dlya obschego uravneniya Lavrenteva—Bitsadze”, Uch. zap. Kuibyshev. gos. pedagog. in-ta., 29 (1959), 45–66 | MR

[9] Islomov B., “O lokalnykh i nelokalnykh kraevykh zadachakh dlya uravneniya smeshannogo tipa s dvumya vnutrennimi liniyami vyrozhdeniya”, Uzbek. mat. zh., 2 (1993), 36–42 | MR

[10] Karol I. L., “Ob odnoi kraevoi zadache dlya uravneniya smeshannogo elliptiko-giperbolicheskogo tipa”, Dokl. AN SSSR., 88:2 (1953), 197–200 | MR | Zbl

[11] Mirsaburov M., “Nelokalnaya kraevaya zadacha dlya uravneniya Gellerstetdta”, Mat. zametki., 67:5 (2000), 721–729 | MR | Zbl

[12] Mikhlin S. G., Lektsii po lineinym integralnym uravneniyam, Fizmatgiz, M., 1959

[13] Moiseev E. I., Moiseev T. E., Vafodorova G. O., “Ob integralnom predstavlenii zadachi Neimana—Trikomi dlya uravneniya Lavrenteva—Bitsadze”, Differ. uravn., 51:8 (2015), 1070–1075 | Zbl

[14] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968

[15] Nakhushev A. M., “Nagruzhennye uravneniya i ikh prilozheniya”, Differ. uravn., 19:1 (1983), 86–94 | MR | Zbl

[16] Nakhushev A. M., “O nekotorykh kraevykh zadachakh dlya giperbolicheskikh uravnenii i uravnenii smeshannogo tipa”, Differ. uravn., 5:1 (1969), 44–59 | Zbl

[17] Nakhushev A. M., “Ob odnom priblizhennom metode resheniya kraevykh zadach dlya differentsialnykh uravnenii i ego prilozheniya k dinamike pochvennoi vlagi i gruntovykh vod”, Differ. uravn., 18:1 (1982), 72–81 | MR | Zbl

[18] Salakhitdinov M. S., Islomov B., “Kraevye zadachi tipa zadachi Gellerstedta dlya obschego lineinogo uravneniya smeshannogo tipa”, Izv. AN UzSSR. Ser. fiz.-mat. nauk., 2 (1986), 39–43 | MR | Zbl

[19] Salakhitdinov M. S., Amanov D., “Kraevye zadachi tipa zadach Puankare i Trikomi dlya uravneniya smeshannogo tipa s razryvnymi koeffitsientami”, 1 Resp. konf. po differentsialnym uravneniyam, Ashkhabad, 1972, 29–32

[20] Salakhitdinov M. S., Islomov B. I., Uravneniya smeshannogo tipa s dvumya liniyami vyrozhdeniya, Tashkent, 2010

[21] Salakhitdinov M. S., Kadyrov Z., “Zadacha s normalnoi proizvodnoi dlya uravneniya smeshannogo tipa s negladkimi liniyami vyrozhdeniya”, Differ. uravn., 22:1 (1986), 103–114 | MR | Zbl

[22] Smirnov M. M., Uravneniya smeshannogo tipa, Vysshaya shkola, M., 1985

[23] Chubenko L. S., “Zadachi s konormalnoi proizvodnoi dlya obschego uravneniya smeshannogo tipa pervogo roda na ploskosti”, Volzh. mat. sb., 6 (1968), 271–286 | MR

[24] Shkhanukov M. Kh., “O nekotorykh kraevykh zadachakh dlya uravneniya tretego poryadka, voznikayuschikh pri modelirovanii filtratsii zhidkosti v poristykh sredakh”, Differ. uravn., 18:4 (1982), 689–699 | MR | Zbl

[25] Yuldashev T. K., “Ob odnoi kraevoi zadache dlya integro-differentsialnogo uravneniya v chastnykh proizvodnykh chetvertogo poryadka s vyrozhdennym yadrom”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obzory., 145 (2018), 95–109 | MR

[26] Yuldashev T. K., “Opredelenie koeffitsienta v nelokalnoi zadache dlya integro-differentsialnogo uravneniya tipa Bussineska s vyrozhdennym yadrom”, Vladikavkaz. mat. zh., 21:2 (2019), 67–84 | MR | Zbl

[27] Yuldashev T. K., “Obratnaya kraevaya zadacha dlya integro-differentsialnogo uravneniya tipa Bussineska s vyrozhdennym yadrom”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obzory., 149 (2018), 129–140

[28] Bassanini P., Calaverni M., “Contrazioni multi sistemi iperbolici, eprobemia del laser”, Atti Semin. Mat. Fis. Univ. Madena, 31:1 (1982), 32–50 | MR | Zbl

[29] Islomov B., Abdullayev A. A., “On a problem for an elliptic type equation of the second kind with a conormal and integral condition”, J. Nanosyst. Phys. Chem. Math., 9:3 (2018), 307–318 | DOI

[30] Pulkina L. S., “Nonlocal problems for hyperbolic equations with degenerate integral conditions”, Electron. J. Differ. Equations., 2016