Nonlinear integro-differential equation with a high-degree hyperbolic operator
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations, geometry, and topology, Tome 201 (2021), pp. 53-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine the solvability of the initial-value problem for a nonlinear integro-differential equation with a hyperbolic operator of arbitrary natural degree and a degenerate kernel. The expression of the high-order partial differential operator on the left-hand side of the equation through the superposition of first-order differential operators allowed us to represent the equation considered as an integral equation for unknown function along the characteristics. Also, we prove the unique solvability of the initial-value problem and the stability of solutions with respect to initial data.
Keywords: initial-value problem, characteristic, superposition of differential operators, high-degree hyperbolic operator, degenerate kernel, unique solvability.
@article{INTO_2021_201_a4,
     author = {T. K. Yuldashev (Iuldashev) and I. U. Nazarov},
     title = {Nonlinear integro-differential equation with a high-degree hyperbolic operator},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {53--64},
     publisher = {mathdoc},
     volume = {201},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_201_a4/}
}
TY  - JOUR
AU  - T. K. Yuldashev (Iuldashev)
AU  - I. U. Nazarov
TI  - Nonlinear integro-differential equation with a high-degree hyperbolic operator
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 53
EP  - 64
VL  - 201
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_201_a4/
LA  - ru
ID  - INTO_2021_201_a4
ER  - 
%0 Journal Article
%A T. K. Yuldashev (Iuldashev)
%A I. U. Nazarov
%T Nonlinear integro-differential equation with a high-degree hyperbolic operator
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 53-64
%V 201
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_201_a4/
%G ru
%F INTO_2021_201_a4
T. K. Yuldashev (Iuldashev); I. U. Nazarov. Nonlinear integro-differential equation with a high-degree hyperbolic operator. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations, geometry, and topology, Tome 201 (2021), pp. 53-64. http://geodesic.mathdoc.fr/item/INTO_2021_201_a4/

[1] Boichuk A. A., Strakh A. P., “Neterovy kraevye zadachi dlya sistem lineinykh integro-dinamicheskikh uravnenii s vyrozhdennym yadrom na vremennoi shkale”, Nelineinye kolebaniya., 17:1 (2014), 32–38

[2] Dzhumabaev D. S., Bakirova E. A., “Ob odnoznachnoi razreshimosti kraevoi zadachi dlya sistem integro-differentsialnykh uravnenii Fredgolma s vyrozhdennym yadrom”, Nelineinye kolebaniya., 18:4 (2015), 489–506 | MR

[3] Goritskii A. Yu., Kruzhkov S. N., Chechkin G. A., Uravneniya s chastnymi proizvodnymi pervogo poryadka, MGU, M., 1999

[4] Imanaliev M. I., Ved Yu. A., “O differentsialnom uravnenii v chastnykh proizvodnykh pervogo poryadka s integralnym koeffitsientom”, Differ. uravn., 23:3 (1989), 465–477

[5] Zamyshlyaeva A. A., “Matematicheskie modeli sobolevskogo tipa vysokogo poryadka”, Vestn. Yuzhno-Ural. un-ta. Ser. Mat. model. program., 7:2 (2014), 5–28 | Zbl

[6] Karimov Sh. T., “Ob odnom metode resheniya zadachi Koshi dlya odnomernogo polivolnovogo uravneniya s singulyarnym operatorom Besselya”, Izv. vuzov. Mat., 8 (2017), 27–41 | Zbl

[7] Koshanov B. D., Soldatov A. P., “Kraevaya zadacha s normalnymi proizvodnymi dlya ellipticheskogo uravneniya vysokogo poryadka na ploskosti”, Differ. uravn., 52:12 (2016), 1666–1681 | MR | Zbl

[8] Pokhozhaev S. I., “O razreshimosti kvazilineinykh ellipticheskikh uravnenii proizvolnogo poryadka”, Mat. sb., 117:2 (1982), 251–265 | MR | Zbl

[9] Skrypnik I. V., Nelineinye ellipticheskie uravneniya vysshego poryadka, Naukova dumka, Kiev, 1973

[10] Yuldashev T. K., “Razreshimost i opredelenie koeffitsienta v odnoi kraevoi zadache dlya integro-differentsialnogo uravneniya Fredgolma s vyrozhdennym yadrom”, Dokl. NAN Ukrainy., 5 (2017), 8–16 | MR | Zbl

[11] Yuldashev T. K., “Ob odnoi nelokalnoi zadache dlya neodnorodnogo integro-differentsialnogo uravneniya tipa Bussineska s vyrozhdennym yadrom”, Uch. zap. Kazan. un-ta. Ser. Fiz.-mat. nauki., 159:1 (2017), 88–99 | MR

[12] Yuldashev T. K., “Smeshannaya zadacha dlya nelineinogo integro-differentsialnogo uravneniya s parabolicheskim operatorom vysokoi stepeni”, Zh. vychisl. mat. mat. fiz., 52:1 (2012), 112–123 | MR | Zbl

[13] Yuldashev T. K., “Integro-differentsialnoe uravnenie s dvumernym operatorom Uizema vysokoi stepeni”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obzory., 156 (2018), 117–125

[14] Yuldasheva A. V., “Ob odnoi zadache dlya kvazilineinogo uravneniya chetnogo poryadka”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obzory., 140 (2017), 43–49 | MR

[15] Karimov Sh. T., “Multidimensional generalized Erdélyi–Kober operator and its application to solving Cauchy problems for differential equations with singular coefficients”, Fract. Calc. Appl. Anal., 18:4 (2015), 845–861 | MR | Zbl

[16] Samoilenko A. M., Boichuk A. A., Krivosheya S. A., “Boundary-value problems for systems of integro-differential equations with degenerate kernel”, Ukr. Math. J., 48:11 (1996), 1785–1789 | DOI | Zbl

[17] Yuldashev T. K., “Determination of the coefficient and boundary regime in boundary-value problem for integro-differential equation with degenerate kernel”, Lobachevskii J. Math., 38:3 (2017), 547–553 | DOI | MR | Zbl