Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_201_a4, author = {T. K. Yuldashev (Iuldashev) and I. U. Nazarov}, title = {Nonlinear integro-differential equation with a high-degree hyperbolic operator}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {53--64}, publisher = {mathdoc}, volume = {201}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_201_a4/} }
TY - JOUR AU - T. K. Yuldashev (Iuldashev) AU - I. U. Nazarov TI - Nonlinear integro-differential equation with a high-degree hyperbolic operator JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 53 EP - 64 VL - 201 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_201_a4/ LA - ru ID - INTO_2021_201_a4 ER -
%0 Journal Article %A T. K. Yuldashev (Iuldashev) %A I. U. Nazarov %T Nonlinear integro-differential equation with a high-degree hyperbolic operator %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 53-64 %V 201 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_201_a4/ %G ru %F INTO_2021_201_a4
T. K. Yuldashev (Iuldashev); I. U. Nazarov. Nonlinear integro-differential equation with a high-degree hyperbolic operator. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations, geometry, and topology, Tome 201 (2021), pp. 53-64. http://geodesic.mathdoc.fr/item/INTO_2021_201_a4/
[1] Boichuk A. A., Strakh A. P., “Neterovy kraevye zadachi dlya sistem lineinykh integro-dinamicheskikh uravnenii s vyrozhdennym yadrom na vremennoi shkale”, Nelineinye kolebaniya., 17:1 (2014), 32–38
[2] Dzhumabaev D. S., Bakirova E. A., “Ob odnoznachnoi razreshimosti kraevoi zadachi dlya sistem integro-differentsialnykh uravnenii Fredgolma s vyrozhdennym yadrom”, Nelineinye kolebaniya., 18:4 (2015), 489–506 | MR
[3] Goritskii A. Yu., Kruzhkov S. N., Chechkin G. A., Uravneniya s chastnymi proizvodnymi pervogo poryadka, MGU, M., 1999
[4] Imanaliev M. I., Ved Yu. A., “O differentsialnom uravnenii v chastnykh proizvodnykh pervogo poryadka s integralnym koeffitsientom”, Differ. uravn., 23:3 (1989), 465–477
[5] Zamyshlyaeva A. A., “Matematicheskie modeli sobolevskogo tipa vysokogo poryadka”, Vestn. Yuzhno-Ural. un-ta. Ser. Mat. model. program., 7:2 (2014), 5–28 | Zbl
[6] Karimov Sh. T., “Ob odnom metode resheniya zadachi Koshi dlya odnomernogo polivolnovogo uravneniya s singulyarnym operatorom Besselya”, Izv. vuzov. Mat., 8 (2017), 27–41 | Zbl
[7] Koshanov B. D., Soldatov A. P., “Kraevaya zadacha s normalnymi proizvodnymi dlya ellipticheskogo uravneniya vysokogo poryadka na ploskosti”, Differ. uravn., 52:12 (2016), 1666–1681 | MR | Zbl
[8] Pokhozhaev S. I., “O razreshimosti kvazilineinykh ellipticheskikh uravnenii proizvolnogo poryadka”, Mat. sb., 117:2 (1982), 251–265 | MR | Zbl
[9] Skrypnik I. V., Nelineinye ellipticheskie uravneniya vysshego poryadka, Naukova dumka, Kiev, 1973
[10] Yuldashev T. K., “Razreshimost i opredelenie koeffitsienta v odnoi kraevoi zadache dlya integro-differentsialnogo uravneniya Fredgolma s vyrozhdennym yadrom”, Dokl. NAN Ukrainy., 5 (2017), 8–16 | MR | Zbl
[11] Yuldashev T. K., “Ob odnoi nelokalnoi zadache dlya neodnorodnogo integro-differentsialnogo uravneniya tipa Bussineska s vyrozhdennym yadrom”, Uch. zap. Kazan. un-ta. Ser. Fiz.-mat. nauki., 159:1 (2017), 88–99 | MR
[12] Yuldashev T. K., “Smeshannaya zadacha dlya nelineinogo integro-differentsialnogo uravneniya s parabolicheskim operatorom vysokoi stepeni”, Zh. vychisl. mat. mat. fiz., 52:1 (2012), 112–123 | MR | Zbl
[13] Yuldashev T. K., “Integro-differentsialnoe uravnenie s dvumernym operatorom Uizema vysokoi stepeni”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obzory., 156 (2018), 117–125
[14] Yuldasheva A. V., “Ob odnoi zadache dlya kvazilineinogo uravneniya chetnogo poryadka”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obzory., 140 (2017), 43–49 | MR
[15] Karimov Sh. T., “Multidimensional generalized Erdélyi–Kober operator and its application to solving Cauchy problems for differential equations with singular coefficients”, Fract. Calc. Appl. Anal., 18:4 (2015), 845–861 | MR | Zbl
[16] Samoilenko A. M., Boichuk A. A., Krivosheya S. A., “Boundary-value problems for systems of integro-differential equations with degenerate kernel”, Ukr. Math. J., 48:11 (1996), 1785–1789 | DOI | Zbl
[17] Yuldashev T. K., “Determination of the coefficient and boundary regime in boundary-value problem for integro-differential equation with degenerate kernel”, Lobachevskii J. Math., 38:3 (2017), 547–553 | DOI | MR | Zbl