Inverse boundary-value problem for a pseudoparabolic-pseudohyperbolic integro-differential equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations, geometry, and topology, Tome 201 (2021), pp. 16-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine the solvability of a nonlocal inverse boundary-value problem for a mixed pseudoparabolic-pseudohyperbolic integro-differential equation with spectral parameters. Regular and irregular values of the spectral parameters are found. For regular values of spectral parameters, we obtain a criterion for the unique solvability of the inverse boundary-value problem. For irregular values of spectral parameters, we establish a criterion for the existence of an infinite set of solutions.
Keywords: integro-differential equation, mixed-type equation, spectral parameter, integral condition, solvability.
@article{INTO_2021_201_a1,
     author = {T. K. Yuldashev (Iuldashev) and B. I. Islomov},
     title = {Inverse boundary-value problem for a pseudoparabolic-pseudohyperbolic integro-differential equation},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {16--32},
     publisher = {mathdoc},
     volume = {201},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_201_a1/}
}
TY  - JOUR
AU  - T. K. Yuldashev (Iuldashev)
AU  - B. I. Islomov
TI  - Inverse boundary-value problem for a pseudoparabolic-pseudohyperbolic integro-differential equation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 16
EP  - 32
VL  - 201
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_201_a1/
LA  - ru
ID  - INTO_2021_201_a1
ER  - 
%0 Journal Article
%A T. K. Yuldashev (Iuldashev)
%A B. I. Islomov
%T Inverse boundary-value problem for a pseudoparabolic-pseudohyperbolic integro-differential equation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 16-32
%V 201
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_201_a1/
%G ru
%F INTO_2021_201_a1
T. K. Yuldashev (Iuldashev); B. I. Islomov. Inverse boundary-value problem for a pseudoparabolic-pseudohyperbolic integro-differential equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential equations, geometry, and topology, Tome 201 (2021), pp. 16-32. http://geodesic.mathdoc.fr/item/INTO_2021_201_a1/

[1] Apakov Yu. P., “Trekhmernyi analog zadachi Trikomi dlya parabolo-giperbolicheskogo uravneniya”, Sib. zh. industr. mat., 14:2 (2011), 34–44 | MR | Zbl

[2] Gelfand I. M., “Nekotorye voprosy analiza i differentsialnykh uravnenii”, Usp. mat. nauk., 14:3 (1959), 3–19 | Zbl

[3] Gordeziani D. G., Avalishvili G. A., “Resheniya nelokalnykh zadach dlya odnomernykh kolebanii sredy”, Mat. model., 12:1 (2000), 94–103 | MR | Zbl

[4] Dzhuraev T. D., Sopuev A., Mamazhanov M., Kraevye zadachi dlya uravnenii parabolo-giperbolicheskogo tipa, Fan, Tashkent, 1986

[5] Islomov B., “Analogi zadachi Trikomi dlya uravneniya smeshannogo parabolo-giperbolicheskogo tipa s dvumya liniyami i razlichnym poryadkom vyrozhdeniya”, Differ. uravn., 27:6 (1991), 1007–1014 | MR | Zbl

[6] Moiseev E. I., Uravneniya smeshannogo tipa so spektralnym parametrom, MGU, M., 1988

[7] Moiseev E. I., “O razreshimosti odnoi nelokalnoi kraevoi zadachi”, Differ. uravn., 37:11 (2001), 1565–1567 | MR | Zbl

[8] Polosin A. A., “O zadache Gellerstedta s naklonnoi proizvodnoi dlya uravneniya smeshannogo tipa so spektralnym parametrom”, Differ. uravn., 55:10 (2019), 1416–1425 | Zbl

[9] Pulkina L. S., “Nelokalnaya zadacha dlya giperbolicheskogo uravneniya s integralnymi usloviyami 1 roda s yadrami, zavisyaschimi ot vremeni”, Izv. vuzov. Mat., 10 (2012), 32–44 | Zbl

[10] Repin O. A., “Analog zadachi Nakhusheva dlya uravneniya Bitsadze—Lykova”, Differ. uravn., 38:10 (2002), 1412–1417 | MR | Zbl

[11] Ruziev M. Kh., “O kraevoi zadache dlya odnogo klassa uravnenii smeshannogo tipa v neogranichennoi oblasti”, Mat. zametki., 92:1 (2012), 74–83 | Zbl

[12] Sabitov K. B., K teorii uravnenii smeshannogo tipa, Fizmatlit, M., 2014

[13] Salakhitdinov M. S., Urinov A. K., Kraevye zadachi dlya uravnenii smeshannogo tipa so spektralnym parametrom, Fan, Tashkent, 1997

[14] Salakhitdinov M. S., Islomov B. I., “Nelokalnaya kraevaya zadacha s konormalnoi proizvodnoi dlya uravneniya smeshannogo tipa s dvumya vnutrennimi liniyami i razlichnymi poryadkami vyrozhdeniya”, Izv. vuzov. Mat., 1 (2011), 49–58 | Zbl

[15] Turbin M. V., “Issledovanie nachalno-kraevoi zadachi dlya modeli dvizheniya zhidkosti Gershel—Balkli”, Vestn. Voronezh. un-ta. Ser. Fiz. Mat., 2 (2013), 246–257 | Zbl

[16] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977

[17] Urinov A. K., Nishonova Sh. T., “Zadacha s integralnymi usloviyami dlya elliptiko-parabolicheskogo uravneniya”, Mat. zametki., 102:1 (2017), 81–95 | MR | Zbl

[18] Uflyand Ya. S., “K voprosu o rasprostranenii kolebanii v sostavnykh elektricheskikh liniyakh”, Inzh.-fiz. zh., 7:1 (1964), 89–92

[19] Ushakov E. I., Staticheskaya ustoichivost elektricheskikh tsepei, Nauka, Novosibirsk, 1988

[20] Frankl F. I., Izbrannye trudy v gazovoi dinamike, Nauka, M., 1973

[21] Yuldashev T. K., “Smeshannoe differentsialnoe uravnenie tipa Bussineska”, Vestn. VolGU. Ser. 1. Mat. Fiz., 2 (33) (2016), 13–26

[22] Yuldashev T. K., “Ob odnom smeshannom differentsialnom uravnenii chetvertogo poryadka”, Izv. in-ta mat. inform. Udmurt. un-ta., 47:1 (2016), 119–128 | Zbl

[23] Yuldashev T. K., “O razreshimosti odnoi kraevoi zadachi dlya differentsialnogo uravneniya tipa Bussineska”, Differ. uravn., 54:10 (2018), 1411–1419 | Zbl

[24] Yuldashev T. K., “Ob odnoi nelokalnoi kraevoi zadache dlya nelineinogo integro-differentsialnogo uravneniya Fredgolma s vyrozhdeniem yadra”, Differ. uravn., 54:12 (2018), 1687–1694 | MR | Zbl

[25] Yuldashev T. K., “Smeshannoe integro-differentsialnoe uravnenie chetvertogo poryadka s vyrozhdennymi yadrami”, Matematicheskii forum. Issledovaniya po matematike i matematicheskomu obrazovaniyu, Itogi nauki. Yug Rossii, 12, VNTs RAN, Vladikavkaz, 2018, 126–138

[26] Yuldashev T. K., “Opredelenie koeffitsienta i klassicheskaya razreshimost nelokalnoi kraevoi zadachi dlya integro-differentsialnogo uravneniya Benni—Lyuka s vyrozhdennym yadrom”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obzory., 156 (2018), 89–102

[27] Yuldashev T. K., “O razreshimosti odnoi kraevoi zadachi dlya obyknovennogo integro-differentsialnogo uravneniya Fredgolma s vyrozhdennym yadrom”, Zh. vychisl. mat. mat. fiz., 59:2 (2019), 252–263 | Zbl

[28] Yuldashev T. K., “Opredelenie koeffitsienta v nelokalnoi zadache dlya integro-differentsialnogo uravneniya tipa Bussineska s vyrozhdennym yadrom”, Vladikavkaz. mat. zh., 21:2 (2019), 67–84 | MR | Zbl

[29] Benney D. J., Luke J. C., “Interactions o f permanent waves of finite amplitude”, J. Math. Phys., 43 (1964), 309–313 | DOI | MR | Zbl

[30] Cavalcanti M. M., Domingos Cavalcanti V. N., Ferreira J., “Existence and uniform decay for a nonlinear viscoelastic equation with strong damping”, Math. Meth. Appl. Sci., 24 (2001), 1043–1053 | DOI | Zbl

[31] Yuldashev T. K., “On an integro-differential equation of pseudoparabolic-pseudohyperbolic type with degenerate kernels”, Uch. zap. Erevan. un-ta. Ser. Fiz. Mat., 52:1 (2018), 19–26 | MR | Zbl